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Abstract

Local changes in the topology of electricity grids can cause over-
loads far away from the disturbance [1], making the prediction of the
robustness against changes in the topology – for example caused by
power outages or grid extensions – a challenging task. The impact
of single-line additions on the long-range response of DC electricity
grids has recently been studied [2]. By solving the real part of the
static AC load flow equations, we conduct a similar investigation
for AC grids. In a regular 2D grid graph with cyclic boundary con-
ditions, we find a power law decay for the change of power flow
as a function of distance to the disturbance over a wide range of
distances. The power exponent increases and saturates for large
system sizes. By applying the same analysis to the German trans-
mission grid topology, we show that also in real-world topologies a
long-ranged response can be found.

Power flow equations of an inductive grid

→ Assume a purely inductive grid and sinusoidal voltages.

⇒ Constant nodal voltage magnitudes |Vi| ≡ V [3].
⇒ Reactive power Qi always balanced, so it is sufficient to solve

the active power flow equations:

Pi =
∑
j

Kij sin(θi − θj) . (1)

⇒ System of N nonlinear equations, solvable by a standard root-
finding algorithmin order to find the phase distribution θi.

→Definition of the power capacity of edge (i, j) [3]:

Kij = V 2

ωLij
. (2)

→ Consider voltage phase angles ϕi(ω, t) = ωt + θi(t), with the
grid frequency ω = 2π · 50 Hz [3].

→ Compute the transmitted power

Fij = Kij sin(θi − θj) (3)

for each edge (i, j) of the graph.

2D grid model

→ Cyclic square 2D grid graph, size N = L2.

→ Binary distribution for nodal net generated power Pi ∈
{−P,+P}. Condition

∑
iPi = 0 must be fulfilled, so the linear

system size L must be an even number.

→ Consider constant power capacities Kij = K.

→ Add another “diagonal” transmission line somewhere in the grid
and observe the change of power flow ∆Fij = F after

ij − F before
ij

for each transmission line (i, j).
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Figure 1: (a) Power flow after the addition of another transmis-
sion line (diagonal at the center). (b) Change of transmitted power
after adding the line. The width of each line is proportional to the
absolute change of transmitted power, |∆Fij| [4].

→ To analyze response properties, consider edge distance rij of the
edge (i, j) to the added edge.

→ Average |∆Fij| over all edges (i, j) with the same distance r
to the disturbance, and over R = 1000 realizations of disorder
(random placement of generators and consumers). Realizations
for which no stable solution can be found are skipped.

Long-range response in a 2D grid
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Figure 2: Double-logarithmic plot of 〈|∆Fij|〉(r) for different
linear system sizes L. For the regimes R1 (r ≤ 3) and R2
(4 ≤ r < 2L/5), the data has been fitted to a power law (4)
[4].

→ The distance regimes R1 and R2 are dominanted by a power law
behavior of 〈|∆Fij|〉(r) (see Fig. 2). We fit the data to the fit
model

f (r) = ak r
−bk , (4)

where k ∈ {1, 2} (R1, R2). Fig. 4 shows fit results for R2 and
their dependence on linear system size L and power ratio P/K.

→ In distance regime R3, the data is almost following an exponen-
tial law (not demonstrated here) [4].

→ In R4, 〈|∆Fij|〉 saturates for r → L (or even slightly increases
again).
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Figure 3: Sketch of the distance regimes R1, R2, R3 and R4 in
a cyclic L× L 2D grid, each with a different long-range behavior.
Black dot: Location of the topological perturbation [4].
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Figure 4: Dependence of the fit parameters a2 and b2 (regime
R2) on the linear system size L and the ratio P/K. For better
readability, the error bars are not shown in the bottom right plot
[4].
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Long-range response in the German transmission grid

→ Load flow perturbations cannot pass 1-cut nodes (no rerouting possible).
⇒ Consider largest 2-connected component for this study.

largest 2-connected component

remaining grid elements

Figure 5: Model for the German transmission grid (220 kV and 380 kV), based
on SciGRID data [5]. The largest 2-connected component is marked in red [4].
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Figure 6: Double-logarithmic plot of 〈|∆F `
ij|〉(r) for 880 single lines ` (gray)

added to the largest 2-connected component of the German transmission grid
model with P/K = 0.25, w = 1 and R = 100 [5]. For comparison, the thick
black line illustrates a power law ∼ r−2. Some curves are highlighted with color,
belonging to the different subsets of added edges in Fig. 7 [4].
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Figure 7: Typical local topologies in the vicinity of the added edge (marked
in red) leading to different responses: (a) Sudden drop of 〈|∆Fij|〉(r) at r = 2
(red curves in Fig. 6). (b) Sudden drop of 〈|∆Fij|〉(r) at r = 4 (orange curves
in Fig. 6). (c) Profoundly weak decay of 〈|∆Fij|〉(r) (green curve in Fig. 6).
Filled circles: Connecting nodes to the rest of the grid [4].

Conclusions

→We have shown numerically that local grid modifications cause a long-range
response in AC electricity grids (power law).

→ The power exponent in the medium distance regime (R2) is saturating at a
value of b2 ≈ 1.971 (L = 80).

→ German power grid: Decay rate depends strongly on the grid structure at
different distances on each path, thus no pure power law.

Possible future work
→ Follow each path separately through irregular grids, find relation of decay rate

to geometric measures along the path.
→ Study time-dependent spreading of local phase perturbations, following a re-

cently published approach [3]. Clarify the role of Anderson localization in AC
transmission grids.

→ Application to other random topologies.
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