

Forschungsinitiative der Bundesregierung

Determination of resonance frequencies of LC networks with binary link disorder

Daniel Jung

Jacobs University Bremen School of Engineering and Science Solid State Physics Group

December 10, 2014

Table of contents

- 1. Motivation
 - LC circuit
 - Flow equations

2. Model

- Basic Graph Theory
- The 2D grid model
- The Small World Model
- Adding Edge Attributes
- 3. Numerical method
 - Resonance frequencies
- 4. Resonance spectra
 - The 2D grid model
 - The Small World Model
- 5. Summary

Motivation

A LC circuit has a resonance frequency of $\omega_0=rac{1}{\sqrt{LC}}$

Frequency ω of AC current approaching the resonance frequency:

$$\lim_{\omega
ightarrow\omega_0}Z(\omega)=\infty$$

 \Rightarrow No power transmission possible!

Normal operation: ω should stay far below the smallest resonance.

Arbitrary LC network

- Coupled LC oscillators
- Set of resonance frequencies ω_n

Z = R + iX

$$rac{1}{X} = rac{1}{i\omega L} \ + i\omega C$$

Flow equations I

Combine Ohm's law

$$V_{ij}=Z_{ij}I_{ij} \quad ext{or} \quad I_{ij}=Y_{ij}V_{ij}$$

with Kirchhoff's laws for each node and mesh

$$I_i = \sum_j I_{ij}$$
 $V_{ij} = V_i - V_j$

to derive the current flow equations

$$I_i = \sum_j Y_{ij} (V_i - V_j)$$

Name	Symbol
Impedance matrix	\mathbf{Z}
Admittance matrix	Y

An arbitrary one-phasic AC grid with line impedances Z_{ij} .

 $\begin{array}{l} { { { Generator:}} I_i > 0 } \\ { { Consumer:} I_i < 0 } \end{array}$

 $\mathbf{Y} = \mathbf{Z}^{-1}$

R. Huang, G. Korniss, S. Nayak, 2009 (http://dx.doi.org/10.1103 /PhysRevE.80.045101)

٠

Flow Equations II

$$I_i = \sum_j Y_{ij} (V_i - V_j)$$

To get a standard matrix-vector multiplication, reformulate to

$$I_i = \sum_j L_{ij} V_j \quad ext{or} \quad \mathbf{I} = \mathbf{L} \mathbf{V}$$

An arbitrary one-phasic AC grid.

Generator: $I_i > 0$ Consumer: $I_i < 0$

with

$$L_{ij} = \delta_{ij} \sum_{k
eq i} Y_{ik} - (1 - \delta_{ij}) Y_{ij}$$

Note:

- \mathbf{L} is defined in analogy to the topological network Laplacian \mathbf{G} .
- L is commonly referred to as *admittance matrix* as well.

Basic Graph Theory I

A graph is given by

- a set of nodes *i*
- a set of edges (i, j)

Properties

Property	Explanation	
Order N	Number of nodes	
Size	Number of edges	

N=4

Basic Graph Theory II

Node Properties

Property	Explanation
Degree	Number of incident edges

Matrices

Name	Explanation
Degree matrix ${f D}$	Diagonal matrix containing all node degrees
Adjacency matrix ${f E}$	Nonzero only if nodes i and j are <i>adjacent</i>
Laplacian matrix ${f G}$	$\mathbf{G} = \mathbf{D} - \mathbf{E}$

$$G_{ij} = \delta_{ij} \sum_{k
eq i} E_{ik} - (1-\delta_{ij}) E_{ij}$$

Example

$$D = egin{pmatrix} 2 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} \ E = egin{pmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 \ 1 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix} \ G = egin{pmatrix} 2 & -1 & 0 \ -1 & 2 & -1 & 0 \ -1 & 2 & -1 & 0 \ -1 & -1 & 3 & -1 \ 0 & 0 & -1 & 1 \end{pmatrix}$$

Basic Graph Theory III

Laplacian spectrum

Certain eigenvalues (EVs) of the Laplacian matrix ${f G}$ have special properties:

- All EVs are non-negative (as **G** is *positive semi-definite*).
- At least one eigenvalue is 0.
- Number of eigenvalues equal to 0: Number of *connected subgraphs*.
- Second-smallest EV: Algebraic connectivity.

Example

The regular 2D grid graph

N=9, periodic boundary conditions

The Small World Model

Closed ring with N nodes, plus S randomly chosen *shortcuts*.

Shortcut density
$$\frac{p}{2} = \frac{S}{N}$$

Number of shortcuts $S=rac{Np}{2}$

Two limiting cases:

Limiting case	Resulting graph	
$p_{\min}=0$	Closed ring	
$p_{ m max}=N-3$	Complete graph	

Example

Maximum number of shortcuts:

$$N=12 \qquad p=1.5 \ S_{
m max}=rac{N(N-3)}{2}$$

J. Travers, S. Milgram, 1969 (http://www.jstor.org/stable/2786545); M. Newman, D. Watts, 1999 (http://dx.doi.org/10.1016/S0375-9601%2899%2900757-4); R. Huang, G. Korniss, S. Nayak, 2009 (http://dx.doi.org/10.1103/PhysRevE.80.045101)

Adding Edge Attributes

In order to describe LC networks, we attribute an impedance Z_{ij} to each edge.

Here, we consider *random* impedances, using a *binary distribution*:

Edge type	$oldsymbol{Z}_{ij}$	Chance
Capacitance	$(i\omega C)^{-1}$	q
Inductance	$i\omega L$	1-q

R. Huang, G. Korniss, S. Nayak, 2009 (http://dx.doi.org/10.1103 /PhysRevE.80.045101) Example

$$N=12 \ p=1.5 \quad q=0.5$$

Edge type	Z_{ij}	Chance	Y_{ij}	$m{h}_{ij}$
Capacitance	$(i\omega C)^{-1}$	q	$y_1=i\omega C$	-1
Inductance	$i\omega L$	1-q	$y_2=(i\omega L)^{-1}$	1

Introduce matrix \mathbf{h} :

$$h_{ij} = \left\{egin{array}{ccc} -1 &, & ext{edge} \ (i,j) ext{ carries capacitance C} \ 1 &, & ext{edge} \ (i,j) ext{ carries inductance L} \ 0 &, & ext{no edge between i and j.} \end{array}
ight.$$

 \Rightarrow Similar to ${f E}$, but also -1 allowed.

Resonance frequencies I

Remember:

Flow equations:

$$egin{aligned} I_i = \sum_j L_{ij} V_j & ext{or} \ \mathbf{I} = \mathbf{L} \mathbf{V} \end{aligned}$$

with "Laplacian matrix" **L**.

- Consider resonance case, $I_i = 0$
- The system can be seen as a system of coupled LC oscillator circuits
- The system has N resonance frequencies ω_n

$$\sum_j L_{ij}(\omega) \, V_j = 0 \qquad ext{or} \qquad \mathbf{LV} = \mathbf{0}$$

Resonance frequencies II

Define \mathbf{H} ,

$$H_{ij} = \delta_{ij} \sum_{k
eq i} h_{ik} - (1-\delta_{ij}) h_{ij} \quad ,$$

Remember:
$$u = i w C$$

$$egin{aligned} y_1 &= i\omega 0 \ y_2 &= (i\omega L)^{-1} \ h_{ij} &= egin{aligned} &-1 &, & \mathrm{Y}_{\mathrm{ij}} &= \mathrm{y}_1 \ 1 &, & \mathrm{Y}_{\mathrm{ij}} &= \mathrm{y}_2 \ 0 &, & \mathrm{Y}_{\mathrm{ij}} &= 0 \end{aligned}$$

and

$$\lambda = rac{y_1+y_2}{y_1-y_2} \quad,$$

so that the flow equations for the resonance case can be rewritten as

$$\mathbf{LV} = \mathbf{0} \qquad \Rightarrow \qquad (\mathbf{H} - \lambda \mathbf{G})\mathbf{V} = \mathbf{0}$$

But this is not yet a regular eigenvalue problem...

R. Huang, G. Korniss, S. Nayak, 2009 (http://dx.doi.org/10.1103 /PhysRevE.80.045101); Fyodorov 1999 (http://dx.doi.org/10.1088/0305-4470 /32/42/314)

Resonance frequencies III

Define

Remember:

$$ilde{\mathbf{H}} = \mathbf{G}^{-1/2} \, \mathbf{H} \, \mathbf{G}^{-1/2}$$

(real symmetric) and

$$egin{aligned} y_1 &= i\omega C \ y_2 &= (i\omega L)^{-1} \end{aligned}$$

 $\lambda=rac{y_1+y_2}{y_1-y_2}$

 $ilde{\mathbf{V}} = \mathbf{G}^{1/2}\mathbf{V}$

Notes:

- 1. G is real and positive semi-definite, so its matrix square root $G^{1/2}$ is uniquely defined.
- 2. G is positive semi-definite, i.e. it has at least one eigenvalue 0 and hence is always singular. So its pseudo-inverse G^{-1} has to be considered.

Fyodorov 1999 (http://dx.doi.org/10.1088/0305-4470/32/42/314)

Resonance frequencies IV

Define

Remember: $\lambda = rac{y_1+y_2}{y_1-y_2}$

$$ilde{\mathbf{H}} = \mathbf{G}^{-1/2} \, \mathbf{H} \, \mathbf{G}^{-1/2}$$

(real symmetric) and

$$egin{aligned} y_1 &= i\omega C \ y_2 &= (i\omega L)^{-1} \end{aligned}$$

$$ilde{\mathbf{V}} = \mathbf{G}^{1/2} \mathbf{V}$$

Then, we can rewrite

$$(\mathbf{H} - \lambda \mathbf{G}) \mathbf{V} = \mathbf{0} \qquad \Rightarrow \qquad \mathbf{ ilde{H}} \, \mathbf{ ilde{V}}_n = \lambda_n \mathbf{ ilde{V}}_n$$

So we are facing a regular eigenvalue problem, with a known relationship between the eivenvalues λ_n

and the resonance frequencies ω_n :

$$\omega_n = rac{1}{\sqrt{LC}} \, \sqrt{rac{1+\lambda_n}{1-\lambda_n}}$$

Fyodorov 1999 (http://dx.doi.org/10.1088/0305-4470/32/42/314)

Resonance spectra I: 2D grid

Define the density of resonances (DOR):

$$ho(\lambda) = rac{1}{N}\sum_{n=1}^{N_{
m R}} \delta(\lambda-\lambda_n)$$

 $N_{
m R}$: Number of "true" resonances $(-1 < \lambda_n < 1)$

Obtain *ensemble average* (arithmetic mean) of the DOR over many disorder realizations (ADOR).

Resonance spectra II: Small World Model

Large-p limit

 \Rightarrow Confirming results by Huang et al. (http://dx.doi.org/10.1103 /PhysRevE.80.045101)

Resonance spectra III: Small World Model

Small-p limit

 \Rightarrow Largely confirming results by Huang et al. (http://dx.doi.org/10.1103 /PhysRevE.80.045101)

 \Rightarrow Difference: Peak at $\lambda = 0$.

Summary & Outlook

Summary

- Description of LC networks
 - simple graphs
 - binary distribution of edge impedances
- Calculation of resonance frequencies and the density of resonances

Outlook

- Different topologies (triangular grid, honeycomb grid, and **realistic network topologies**).
- Other impedance distributions (also **continuous distributions**), also including **ohmic resistances**.
- Beyond the resonance case (current and power flow calculations).

Thank you for your attention!

References

- J. Travers, S. Milgram, 1969 (http://www.jstor.org/stable/2786545)
- M. Newman, D. Watts, 1999 (http://dx.doi.org/10.1016 /S0375-9601%2899%2900757-4)
- R. Huang, G. Korniss, S. Nayak, 2009 (http://dx.doi.org/10.1103 /PhysRevE.80.045101)
- Fyodorov 1999 (http://dx.doi.org/10.1088/0305-4470/32/42/314)

Jacobs University Bremen School of Engineering and Science Solid State Physics Group

Collective Nonlinear Dynamics of Electricity Networks (CoNDyNet)

Forschungsinitiative der Bundesregierung

TWITTERS