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Abstract

We study the metal-insulator transition (MIT) in effective
tight binding models (ETBM) by looking at the scaling be-
haviour of the typical density of states (GDOS) which we
obtain by taking the geometrical mean of the local density
of states (LDOS) of many different lattice sites and realiza-
tions of disorder. The LDOS can be performantly calculated
by means of the kernel polynomial method (KPM). Right
now we focus on applying this method on the “standard”
Anderson model of disorder to check our own implemen-
tation and methodical approach and to validate preceding
results by others.

1. Considered model

Anderson model of disorder [1]:

H =
∑
i

εi|i〉〈i| + t
∑
i,j

|j〉〈i| (1)

εi uncorrelated random site potentials, box
distribution (width W )

t constant isotropic next-neighbor hopping
parameter

|i〉, |j〉 states of the site-occupation basis (i, j site
indices)

lattice 3D simple-cubic supercell, N = L × L × L
sites

boundaries periodic boundary conditions

→ used as a starting point to test our method and imple-
mentation

→ validate or refine results by others [2, 3]

2. Measured quantity

→Calculate local density of states (LDOS) ρi(E) using the
kernel polynomial method (KPM, see section 5), carry-
ing information about the spatial distribution of wave func-
tions:

ρi(E) =

N∑
k=1

|〈i|k〉|2 δ(E − Ek) (2)

→ Average over many lattice sites of many realizations of
disorder (total number: S)

→ calculate two kinds of densities:
arithmetic mean geometric mean
leading to total density leading to typical density
of states (ADOS) of states (GDOS) [2, 3]

ρtot(E) =
1

S

S∑
i=1

ρi(E) ρtyp(E) = e
1
S

S∑
i=1

log ρi(E)

(non-critical) (critical at MIT)
→ use flexible abort criterion for the (iterative) averaging

process, depending on the desired accuracy (smooth-
ness) of the curves
This usually results in 105 . . . 107 sites of several hundreds of
realizations of disorder.

→GDOS:
– equals ADOS for zero disorder, is smaller otherwise

(not normalized), pronounces small values
– is suppressed by increasing disorder strength W
– is suppressed by increasing system size N
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Figure 2: The total (ADOS) and the typical (GDOS) den-
sity of states for different disorder parameters W/t ∈
{0, 1, 2, . . . , 17} (from top to bottom). System size is N =
Ld = 403 = 64000 and truncation limit is M = 140.

3. Distinction between localized and extended states

→ do finite size scaling analysis with GDOS data
→ expect change of scaling behavior at the mobility edges

(ME)
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Figure 3: Typical density of states (GDOS) for different sys-
tem sizes N = Ld (disorder: W/t = 13.2).

→ do curve fitting for every energy interval, assume a simple
power-law:

ρtyp(L) =
a

Lp
(3)

→Due to our choice to keep the ratio M/Ld constant, ex-
tended states seem to show a 1/L behavior, whereas lo-
calized states behave like 1/Lp with p > 1.

An additional constant term would surely better fit GDOS data be-
longing to extended states which remain finite in the limit of infinite
system size. But this can even be turned into an advantage be-
cause it only means that the (poor) fits in those regions will lead
to exponents p < 1. This is nice, because now the cutoff to read
off the mobility edges can be chosen exactly to c = 1t.
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Figure 4: Examples for the scaling behavior of the GDOS
with increasing system edge length L for different band en-
ergies E (disorder: W/t = 13.2). Resulting fit parameters
from fit model (3) in the legend.

→ distinguish different regions within the band by looking at
the energy dependency of the fitting parameters of the
model function (3)
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Figure 5: Scaling exponent p as a function of energy E for
different disorder parameters W . The thick black line indi-
cates the cutoff c = 1t that is used to read off the mobility
edges.
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4. Phase diagram of disorder

→ use cutoff c = 1t to read off the mobility edges (ME) EM
from the function p(E) for every disorder parameter W

→ plot mobility edges EM against disorder parameter W
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Figure 6: Phase diagram of disorder as obtained by our
method with the accuracy of our current data.

→ resulting phase diagram agrees mostly with other find-
ings [2, 3]:

– for zero disorder, the mobility edges coincide with the
band edges

– upcoming localized states in the band tails for increas-
ing disorder

– reentrance behavior, but turning points slightly different
(E ≈ 8.3t instead of E ≈ 7.6t [2])

– critical disorder of about Wc = 16.5t (probably slightly
below)

→ fluctuations in the function p(E) still lead to poor results
when approaching the critical disorder (Wc/t = 16.5)

5. The kernel polynomial method

→ polynomial series expansion based on Chebychev poly-
nomials [3]:

f (x) =
1

π
√
1− x2

µ0 + 2

∞∑
n=1

µn Tn(x)

 (4)

→Chebychev polynomials:

Tn(x) = cos(n arccos(x)) (5)

→ coefficients (“Chebychev moments”) in the case of LDOS
(f (x) ≡ ρi(E)):

µn =

1∫
−1

f (x)Tn(x)dx = 〈i|Tn(H)|i〉 (6)

→ there exist recursive formulas to calculate the moments
µn iteratively, allowing for efficient algorithms

→ core of main iteration loop consists mainly of a sparse
matrix-vector multiplication, hence low memory con-
sumption

→ order of N method (given a N ×N sparse matrix)

→ approximation: truncate the series after a finite number
of moments M (truncation limit)

→ no need for diagonalization of H

Outlook

→ accuracy still has to be improved (especially near the crit-
ical disorder)

→maybe extend implementation to VMKPM (variable mo-
ment KPM) [2]

→ goal: develop a method which does not rely on external
parameters for calibration (e.g. by prior knowledge of the
critical disorder Wc)

→ After successful application to the Anderson model, we
plan to study more interesting systems like binary alloys
and magnetic semiconductors.
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