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“Very few believed [in localization] at the time, and even fewer saw
its importance; among those who failed to fully understand it at first
was certainly its author. It has yet to receive adequate mathematical

treatment, and one has to resort to the indignity of numerical
simulations to settle even the simplest questions about it.”

P. W. Anderson, Nobel lecture (1977)





Abstract

This thesis considers the impact of local magnetic moments on the Anderson transition,
which is a disorder-induced quantum phase transition from a metallic to an insulating
phase. In certain doped semiconductors like phosphorus-doped silicon (Si:P), a metal-
insulator transition (MIT) is observed which is driven not only by disorder, but also
by interaction. The latter gives rise to a MIT by itself, the Mott-Hubbard transition.
Furthermore, local magnetic moments have been found in Si:P, which persist deep into
the metallic regime. The formulation of an acceptable theoretical description of the MIT
in such materials is still pending.

We approach the problem within an effective model, using the well-known Anderson
model to describe the dynamics of the electrons inside the impurity band formed by
the donor states. The presence of a finite concentration of local magnetic moments is
approximated by an exchange coupling to classical magnetic impurities. The effects of
Heisenberg impurities are compared with those of Ising impurities. The results are ob-
tained numerically, based on a finite-size scaling analysis of the typical density of states,
which is the geometric average of the local density of states. The latter is calculated
by means of the kernel polynomial method, which allows for an efficient estimation of
spectral quantities.

The results show that the critical value Wc of the site-diagonal disorder amplitude
is a monotonically decreasing function of the exchange coupling strength J in the case
of Ising impurities. In the presence of Heisenberg impurities, Wc is first enhanced with
increasing J , before it eventually decreases as well. The difference in behavior can be
explained by a change of symmetry from orthogonal to unitary, caused by the Heisenberg
impurities. The scaling ofWc with J is analyzed and compared to analytical predictions.
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1. Introduction

In this thesis, the effects of local magnetic moments on the Anderson metal-insulator
transition (AMIT) are investigated. The AMIT is a continuous (second order) quantum
phase transition from a metallic to an insulating phase, induced by disorder [BK94].
The DC conductivity is thereby expected to vanish beyond a critical amount of disor-
der, or if the density of states (DOS) around the Fermi energy is sufficiently low. The
prefix “quantum” distinguishes this kind of phase transition from conventional, ther-
mally driven phase transitions known from thermodynamics, as the AMIT occurs at
zero temperature, driven merely by quantum fluctuations [BK94].

In solids, disorder can manifest itself in various forms: The most prominent is sub-
stitutional disorder, where a certain fraction of the host atoms are replaced by those of
another element, forming an alloy with two or more components [Jun10]. This can either
be achieved on purpose to control the electronic properties of a material (doping), or
represent natural imperfection (impurities). Other forms of disorder include interstitial
disorder (atoms at interim positions of the crystal lattice) and structural disorder (va-
cancies, adatoms, glasses). Depending on the type, parameters controlling the amount
of disorder may be given by the concentration of dopants, impurities or vacancies, or by
the range and shape of a probability density function that assigns random values to a
disorder potential or a transfer matrix element.

The occurrence of a metal-insulator transition (MIT) is explained by the nature of
the electronic eigenstates near the Fermi energy. Following basic solid state theory, the
problem of free electrons moving in a strictly periodic potential is solved by the Bloch
theorem [AM76] (see section 2.1). The solutions for the electronic eigenstates are known
as Bloch waves, which are called extended in the sense that they feature a non-zero
wave function intensity (WFI) throughout the crystal, similar to plane waves. Extended
eigenstates allow the electron to travel to the far edge of the crystal, thus contributing to
the conductance of the specimen. This picture constitutes the fundamental explanation
for the good electronic transport properties of metals.

As soon as there are deviations from the periodic symmetry of the potential, caused
for example by the existence of impurities, the Bloch theorem no longer applies. In fact,
pure crystals are rather the exception in nature than the rule [LT85]. Small amounts of
disorder may however still be treated within perturbational approaches [LT85]. Within
the picture of the classical Drude theory [AM76], impurities cause the electronic wave
functions to scatter, reducing their mean free path, and hence the resistivity of the
material receives a positive weak localization correction, as illustrated in figure 1.1. The
motion of the electron becomes thereby diffusive. Also weak antilocalization corrections
are known, for example in systems with symplectic symmetry (see section 2.4).

However, going beyond the weak localization regime, the classical picture has proven
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1. Introduction
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Figure 1.1.: Illustration of weak localization (red) and weak antilocalization corrections
(green) to the resistivity ρ for small temperatures.

to be insufficient to explain certain experimental data, which indicates the complete sup-
pression of the conductivity beyond a critical amount of disorder. Anderson was among
the first to realize that facing strong disorder (or in energy regions of sufficiently low
DOS), the quantum-mechanical nature of the electron has to be taken into account for a
correct understanding of the phenomenon. In his description, the coherent backscatter-
ing of the wave function amplitudes can cause localization of the electronic wave functions
through interference [And58]. In other words, an electron occupying a localized state is
confined to a certain region within the crystal and can no longer travel freely through
the material. The number of eigenstates that contribute to the conductivity is thereby
reduced.

The phenomenon of localization exists already in classical terms, for a particle may be
trapped within the tails of a fluctuating potential landscape, as illustrated in figure 1.2.
However, the quantum-mechanical treatment allows for two additional effects that turn
out to be essential for the description of electron wave function localization: Tunneling,
and constructive interference [KM93]. Tunneling allows the electron to overcome certain
potential barriers which in classical terms would be insurmountable. On the other hand,
constructive interference can cause certain classically extended states to be localized in
effect.

While the localization mechanism of electronic wave functions and the complete sup-
pression of electron diffusion due to disorder has been generally accepted by the sci-
entific community, there is an ongoing debate about the order of the phase transi-
tion [MFT99]. Among others, Mott argues that the transition should be of first order
[Mot68, Mot72, Mot90], implying a discontinuity of the conductivity at the critical point.
At first, this was supported by some experimental evidence. But since the one-parameter
scaling theory of localization (see section 2.3) has been formulated [Abr79], it is widely
accepted that the AMIT is of second order, so that the conductivity changes continu-
ously across the critical point. Furthermore, these findings are compatible with a field-
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Figure 1.2.: Illustration of a classically extended (green) and a classically localized state
(red) in a fluctuating 1D potential landscape.

theoretical description in terms of the non-linear sigma model [Weg86, Weg87a, Weg87b],
which results in many useful relations and estimates for the critical exponents.

Already earlier, a close relation between the localization problem and random matrix
theory (RMT) has been established, from which a classification scheme regarding the
symmetry properties of the random matrices is known. Since then it has been possible
to distinguish different types of random systems by their symmetry properties, finding
that the principle of universality applies to the properties of the MIT for systems of the
same symmetry class (and with the same number of dimensions).

Another remarkable discovery has been the identification of multifractality in the
electronic wave functions near the critical point [CP86, SG91, GS92]. It turns out that
the wave function amplitudes follow a log-normal distribution. Meanwhile, theorists
have established a powerful method to identify the properties of a MIT by observing the
multifractal behavior of the wave functions, commonly known as multifractal analysis
(MFA) [VRR08, RVR08, RVR09, RVSR10, RVSR11]. The multifractal properties of the
electronic states also play a crucial role in the present thesis (see chapter 4).

This sums up the most important theoretical findings that have been obtained since
the original formulation of the problem of localization over five decades ago. It is however
still a highly active field of research, mainly because there exists to date no satisfying
theory providing a thorough explanation of the localization mechanism observed in many
real materials, which leads to a MIT. Due to the lack of analytic predictions, the problem
of localization relies heavily on numerical simulations [Nob77]. But even then it seems
difficult to account for the various effects which may play a crucial role in the real
material, without neglecting vital ingredients. For example, electron-electron interaction
is often neglected, which can cause a localization scheme by itself, leading to the Mott-
Hubbard transition [Mot67, Mot68]. Also the present thesis has to describe the problem
using an approximative picture, picking only one aspect out of the problem: To examine
the effects of local magnetic moments on the AMIT.
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1. Introduction

A variety of experimental studies have been performed to analyze the transition from
metallic to insulating behavior in real materials [LT85, BK94, vL00, LvTW09]. The
present thesis lays focus on phosphorus-doped silicon (Si:P). Some key results of Si:P
are reviewed in section 2.6, as well as a clarification of the physical situation leading to
the MIT. In short, a rising concentration of P-dopants increases the amount of charge
carriers, thus increasing the conductivity, but also increases the amount of disorder. The
strong Coulomb repulsion splits the impurity band formed by the dopant levels into two
Hubbard sub-bands and favors single occupancy of the localized dopant states, which are
distributed randomly throughout the system [vL00]. This gives rise to local magnetic
moments [Sac89, vL98, vL00], which further complicate the description of the MIT in
this material.

We study the influence of local magnetic moments on the AMIT within an effective
model for the impurity band electrons. The model is based on the well-known Anderson
model [And58], extended by a term describing a local exchange coupling to magnetic
spin-1/2 impurities. The influences of two kinds of impurities on the AMIT are com-
pared, Heisenberg impurities and Ising impurities, both in a semi-classical treatment.
The dependence of the critical disorder on the exchange coupling strength is analyzed
and compared to analytic predictions. Also some qualitative results for the influence of
local magnetic moments on the complete phase diagram in the disorder-energy plane are
obtained.

To analyze the MIT, a finite-size scaling (FSS) approach for the geometric average of
the local density of states (GLDOS) is used [ASO06]. The local density of states (LDOS)
can efficiently be calculated within the kernel polynomial method (KPM) [WWAF06].
The KPM is a polynomial expansion technique using Chebychev polynomials (see sec-
tion 3.2). Spectral quantities like the LDOS can be calculated directly, without the need
to obtain the actual eigenspectrum of the system. Despite its abilities, the KPM has not
yet received appreciable attention in the physics community. We shall therefore explain
it to a certain level of detail in section 3.2. We extend KPM approaches by others [SF09]
by combining it with the FSS analysis.

After this general introduction to the problem of electron localization and the MIT in
doped semiconductors, chapter 2 will further illuminate some key aspects fundamental
to our analysis. Then, in chapter 3, the numerical methods used to obtain the results
are explained. The FSS approach is introduced in chapter 4. In chapter 5, the studied
model is introduced and the main results are presented. Some concluding remarks are
made in chapter 6.
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2. Anderson metal-insulator transitions:
Fundamentals

This chapter reviews some essential aspects regarding metal-insulator transitions (MIT),
which are fundamental to our analysis. Readers unfamiliar with the concept of effective
tight binding models (ETBM) find a brief introduction into a class of simple ETBM in
section 2.11. It is instructive to introduce the basic properties of such models in the
absence of disorder, before they are extended by random components in section 2.2.
Fundamental to any finite-size scaling (FSS) approach is certainly the scaling theory
of conductivity [Abr79], which is briefly reviewed in section 2.3. The symmetry clas-
sification of the Hamiltonian considered in the present thesis plays an important role
for the interpretation of the results, so it seems natural to introduce the Wigner-Dyson
classification scheme [Dys62] (section 2.4). The multifractal properties of electron states
near the MIT have to be considered in the FSS approach, so basic assumptions of mul-
tifractal analysis (MFA) are examined in section 2.5. The physical situation leading to
the MIT in doped semiconductors like phosphorus-doped silicon (Si:P) is illuminated in
section 2.6, where also some key experimental results for Si:P are mentioned.

2.1. Effective tight binding models

A class of simple effective tight binding model (ETBM) Hamiltonians shall be introduced,
which are popular for both numerical and analytical investigations throughout solid state
theory. They describe the dynamics of a single particle (for example an electron) at zero
temperature (T = 0 K) in a (possibly random) potential. Hence, no thermal effects
and no electron-phonon interaction are considered. The Hamiltonian possesses only two
terms, one corresponding to the potential energy and the other to the the kinetic energy
of the particle. Electron-electron interaction is neglected as well, which would require a
many-body description.

The Hamiltonian is most conveniently written in a basis of states each localized at a
lattice site, which is referred to as the site-diagonal basis in the following. In one-band
models without spin, there is only one state per lattice site (including the spin of the
electron, there are two). So the Hamiltonian possesses Nk = N eigenstates, where N
is the number of lattice sites (Nk = 2N if the electron spin is considered). Each state
can be occupied by the electron. The site-potential εi, located at site i, is related to the
probability that the electron is occupying a state located at that particular site. The

1 Beyond this, the reader is referred to more general introductions to condensed matter theory [AM76,
Czy08].
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2. Anderson metal-insulator transitions: Fundamentals

general form of such a one-band Hamiltonian is

Ĥ =
∑
i

εi |i〉 〈i|+
∑
〈i,j〉

tij |i〉 〈j| . (2.1)

To describe a system without site-diagonal disorder, the site potentials εi are constant,
εi = ε, and can be chosen to ε = 0 without loss of generality. This has also the
advantage of highlighting the symmetric nature of the energy spectrum of tight binding
Hamiltonians when the potential possesses inversion symmetry [Czy08]. The continuous-
space form of the potential, ε̃(r), is then a periodic function, i.e. it is invariant under
shifts by lattice vectors R,

ε̃(r) = ε̃(r + R) . (2.2)

In other words, a lattice-periodic ε̃(r) correspons to constant site-potentials εi = ε.
By the second term, the electron is allowed to switch to another state, located at

another lattice site. In this way, the motion of the electron through the crystal is
accomplished by hopping transport. For systems without off-diagonal disorder, a constant
hopping amplitude tij = t is considered, which allows hopping from site to site with a
probability proportional to |t|2. t may serve as the energy scale for all other energetic
quantities2. In this simple class of ETBM, the hopping amplitude is only non-zero for
matrix elements connecting neighboring lattice sites (nearest neighbor approximation,
NN). It is immediately clear that in a d-dimensional hypercubic system, there are Z = 2d
nearest neighbors.

The one-particle eigenfunctions and eigenenergies of the Hamiltonian (2.1) are gener-
ally given by the time-independent Schrödinger equation,

Ĥψk(r) = Ekψk(r) . (2.3)

If there is no disorder in the system, i.e. the potentials εi and hoppings tij are constant,
the solutions ψk(r) fulfill the Bloch condition [Czy08]

ψk(r + R) = eik·R ψk(r) . (2.4)

One has to consider a finite sample with periodic boundary conditions (PBC) in order
to normalize the eigenfunctions,

ψk(r) = ψk(r +Niai) , Ni > 0 , i ∈ {1, 2, . . . ,d} , (2.5)

where ai are the basis vectors spanning the conventional unitcell. Formally, only then
the eigenfunctions ψk(r) and eigenenergies Ek can be classified by the crystal momentum
k, the values of which can be taken entirely from the first Brillouin zone (1BZ). The
eigenfunctions itself are of the form

ψk(r) ∼ eik·ruk(r) , (2.6)

2 We will refer to the values of many energetic quantities as multiples of t. This corresponds to setting
t = 1 in numerical simulations.
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2.1. Effective tight binding models

Table 2.1.: List of important symmetry points of simple cubic crystal structures and
their coordinates within the first Brillouin zone [SW82].

Name k

Γ (0, 0, 0)
X (πa , 0, 0)
M (πa ,

π
a , 0)

R (πa ,
π
a ,

π
a )

which are called Bloch waves, and uk(r) are the lattice-periodic Bloch factors modulating
the wave [Czy08]. So in essence, all eigenstates of a non-disordered tight binding system
are extended, similar to plane waves. An extended state lets an electron travel to the far
edge of the crystal and hence contributes to the conductivity of the system.

Following the usual approach within the tight binding approximation, the (one-band)
energy dispersion is given by [Czy08]

E(k) = E0 + t
∑
R

e−ik·R , (2.7)

where t is the abovementioned hopping parameter and the lattice vectors R are limited
here to those pointing to the neighboring lattice sites (nearest neighbor approximation).
If the potentials εi are set to zero, also E0 = 0. Evaluating (2.7) explicitely for a
three-dimensional tight binding system yields the characteristical cosine-like dispersion
relation [Czy08]

E(k) = −2t
(
cos(k1a) + cos(k2a) + cos(k3a)

)
, (2.8)

where a is the lattice spacing. The dispersion (2.8) is plotted in figure 2.1 along straight
lines through important symmetry points within the 1BZ (see table 2.1). According
to equation (2.8), on a d-dimensional hypercubic lattice with Z nearest neighbors, the
bandwidth is

D = 2Zt = 4dt , (2.9)

which can also be verified by a numerical calculation3 of the density of states (DOS)
ρ(E) in figure 2.2 for d = 3.

The DOS of a finite system with discrete eigenenergies Ek is defined as [WWAF06]

ρ(E) =
1

Nk

∑
k

δ(E − Ek) , (2.10)

where k is an index labeling the eigenstates, and Nk is their number. If E is substituted
by the dispertion relation (2.8), the characteristic DOS of a three-dimensional one-
band nearest neighbor tight binding Hamiltonian without disorder (2.1) is obtained,
as depicted in figure 2.2. It features a squareroot-like behavior at the band edges,

3 The source code used to obtain the figure is shown as an example in appendix B.
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2. Anderson metal-insulator transitions: Fundamentals
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Figure 2.1.: Energy dispersion E(k) (2.8) (band structure) of a non-disordered three-
dimensional one-band nearest neighbor tight binding system along selected
symmetry lines through the first Brillouin zone. The symmetry points are
listed in table 2.1.
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Figure 2.2.: Density of states of a non-disordered three-dimensional one-band nearest
neighbor tight binding Hamiltonian (2.1), for a system size ofN = L3 = 1003

and using M = 350 Chebychev moments for the kernel expansion (3.3). The
source code used to obtain this figure can be found in appendix B.
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2.2. Disordered systems: The Anderson model

ρ(E) ∼
√
E, which is characteristical for the DOS of a 3D material [AM76]. Also visible

are the Van-Hove singularities at energies E/t = {−6,−2, 2, 6}, which are characteristic
for a non-disordered system and exist due to highly degenerate eigenstates at certain
symmetry points in k-space. At those energies, the energy dispersion E(k) has a slope
equal to zero (cf. figure 2.1).

2.2. Disordered systems: The Anderson model

Some of the simplest models for investigating the effects of disorder are variants of the
Hamiltonian (2.1), giving up the constant nature of at least one of the parameters tij
or εi, and replacing it by random variates, drawn from some probability distribution. If
the site potentials are drawn from a continuous uniform probability distribution of finite
width W (box distribution),

PB(εi) =
1

W
Θ

(
W

2
−|εi|

)
, (2.11)

while the hopping parameters remain constant, the Hamiltonian (2.1) is known as the
Anderson model [And58],

Ĥ =
∑
i

εi |i〉 〈i|+ t
∑
〈i,j〉

|i〉 〈j| . (2.12)

The width W of the interval from which the site potentials are drawn is a measure for the
disorder strength. ForW = 0, the non-disordered tight binding Hamiltonian is recovered,
and the resulting DOS is shown in figure 2.2. As soon as W is increased, the DOS starts
to broaden, and because of normalization, its value at the band center (E = 0) is
shrinking, as shown in figure 2.3. Being a one-band model, and neglecting any kind of
thermal effects or interactions, the Anderson model assures that a transition to insulating
behavior can only be due to a transformation of the character of the wavefunctions at
the Fermi energy, and not because of the emergence or shift of band gaps [Mil00].

For W > 0, the system loses its periodic symmetry. For weak disorder (small disorder
values W ), deviations from the Bloch theory reviewed above can sometimes still be
taken into account perturbatively [BK94]. However, for larger disorder values W , the
eigenstates can no longer be classified by the crystal wave vector k, and are not of
Bloch type (2.6) anymore4. Bloch theory is no longer applicable. The energy dispersion
(2.7) (band structure) becomes meaningless, as the energy levels are now distributed
randomly and are fluctuating throughout the lattice. As a consequence, the van-Hove
singularities in the DOS “smear out” (cf. figure 2.3), as the degenerate eigenstates of
the non-disordered system dissolve into a band of random energy levels [Jun10].

From (2.9) and (2.11) it is immediately clear that the theoretical band edges (the
Lifshitz boundaries) depend on the disorder strength W like [KM93][

−Zt− W

2
, Zt+

W

2

]
, (2.13)

4 Still, we use the index k in the following to label the different eigenstates of a system.
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2. Anderson metal-insulator transitions: Fundamentals
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W/t=15.00

Figure 2.3.: Density of states of the Anderson model (2.12) for different values of the
disorder parameter W . The system size is L = 50, and the number of
Chebychev moments (see section 3.2) is M = 6250 (for W = 0, it is M =
625).

with Z = 2d in hypercubic systems. However, as numerical calculations do usually
not cover rare events, i.e. extremal eigenvalues in the band tails that occur only with
vanishing probability in a sample, the numerical bandwidth as shown in figure 2.3 is
usually smaller than the theoretical boundaries (2.13).

The Anderson model (2.12) describes the dynamics of an electron in a disordered po-
tential at zero temperature, T = 0 K. Its relevance is due to the absense of any other
mechanisms that could be responsible for localizing the wave functions, like interactions
(Mott transition) or thermal effects [KM93]. Hence, the disorder-induced metal-insulator
transition (MIT), which is called Anderson metal-insulator transition (AMIT) accord-
ingly and occurs at some nonzero critical disorder strength Wc in d > 2 dimensions, can
be thoroughly analyzed.

2.2.1. Other choices for the disorder potential

Typically, the random potentials εi are drawn from a uniform continuous probability
distribution (2.11) (also known as a box distribution of width W ), but other choices can
be justified as well [KM93], as for example a normal (Gaussian) distribution,

PN(εi) =
1

ι
√

2π
exp

(
− ε2

i

2ι2

)
(2.14)
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2.2. Disordered systems: The Anderson model

0.5 0.0 0.5
εi/W

0

1

P
(ε
i)
W

normal
box
Cauchy

Figure 2.4.: The probability density functions of the box distribution (2.11), the normal
distribution (2.14) and the Cauchy distribution (2.15), rescaled by (2.17)
and (2.18).

or a Lorentz (Cauchy) distribution [BSK87],

PL(εi) =
ζ

π(ε2
i + ζ2)

, (2.15)

each leading to another shape of the phase trajectory in the energy-disorder plane (see
figure 2.6). The probability density functions (PDF) of the three distributions are com-
pared in figure 2.4. To investigate the more realistic case of a disordered alloy, one could
also consider a discrete probability distribution for the εi. The simplest is given by the
binary distribution,

PA(εi) =
(1− x) δ(εi − εA) + x δ(εi − εB)

2
, (2.16)

where a concentration x of B-atoms within a host material of A-atoms is described. In
this case, two bands may form, depending on the two disorder-influencing parameters,
the value of x and the energy difference |εA − εB|.

To make the resulting phase diagrams corresponding to different continuous proba-
bility distributions comparable, it is important to scale them in a way so that their
standard deviations agree [Sch85]. To compare the normal distribution (2.14) to the box
distribution (2.11), the parameters W and ι are thus related by [BSK87]

W = ι
√

12 . (2.17)
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2. Anderson metal-insulator transitions: Fundamentals
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Figure 2.5.: Illustration of the concept of mobility edges EM in a schematic plot of the
density of states ρ.

For the Cauchy distribution (2.15), the standard deviation is not defined. Instead, its half
width at half maximum (HWHM) value can be adjusted to that of the box distribution
(2.11) [BSK87], which yields

W = 2ζ . (2.18)

2.2.2. Mobility edges

As soon as disorder is introduced, a certain fraction of the eigenstates of the system
will not be extended anymore, but localized. The general picture is that an electron
occupying a localized state is confined to a certain region of the crystal, so it cannot
travel around freely and hence cannot contribute to the conductivity of the material. At
a critical amount of disorder, all states will be localized, and the material becomes an
insulator. This transition is known as the Anderson metal-insulator transition (AMIT).

It has been proven that at a certain energy within the spectrum, either all states
are extended or all states are localized [KM93]. There can be no mixture of localized
and extended states at a particular energy. It turns out that the localized states are
grouped together in the band tails, or more precisely, in band regions of low density of
states (DOS). The critical energies dividing such regions of localized states and regions of
extended states in the energy band are called mobility edges EM [Mot67]. They bound the
energy regions outside of which the electrons are immobalized. The sketch in figure 2.5
illustrates the concept of mobility edges. Due to the simple shape of the DOS in the
Anderson model, only two mobility edges exist. They vanish above the critical disorder
Wc, where they collapse in the band center, and only localized eigenstates remain.

The existence of mobility edges can be understood by the following considerations
[KM93]: States deep in the tails of an electronic band are expected to have the greatest
chance to become localized for increasing disorder, as they are formed from localized
orbitals bound in the deepest valleys of the potential fluctuations. In the band center,
the chance for a state to remain extended with increasing disorder is greatest, as there
are still enough orbitals with similar energy to overlap with. If the Fermi energy EF lies
in a region of localized states, the conductivity vanishes in the limit of zero temperature,
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whereas in the metallic regime, it approaches some positive value. The mobility edges
mark the transition from metal to insulator if not the disorder but instead the energy is
varied.

2.2.3. The phase diagram of disorder

As the disorder parameter is increased in the Anderson model (2.12), the mobility edges
move towards the center of the band, until at a critical disorder Wc, they finally collapse
in the center of the band, and the entire band consists of localized states. This point
marks the AMIT at half filling (EF = 0). It is common to depict the AMIT in the phase
diagram of disorder, which shows the phase trajectory in the disorder-energy plane (see
figure 2.6). It can be viewed as a visualization of the disorder-dependence of the mobility
edges EM, or the other way around, as a visualization of the energy dependence of the
critical disorder Wc.

It should be pointed out that in general, there might exist more than one system
parameter influencing the amount of disorder, so the phase diagram might become mul-
tidimensional. It is then favourable to show only a slice of the complete phase diagram,
which can then be presented in a 2D plot like figure 2.6. Examples are our phase di-
agrams for constant exchange coupling J and constant impurity concentration nM in
section 4.4. Figure 2.6 shows the phase trajectories for the three abovementioned con-
tinuous PDF for the site potentials εi [BSK87], as well as the value of the critical disorder
strength Wc for each case.

For the two PDF that possess a well-defined standard deviation (normal and box
distribution), the so-called reentrance behavior is observed: There are energy regions
(here:

∣∣E/t∣∣ > 6) in which the phase trajectory is crossed twice for increasing W : From
localized to extended and then again from extended to localized. This is not observed
for the Cauchy distribution (2.15), which decays very slowly for E →∞ and hence does
not lead to a sharply measurable band edge. Even for energies far away from the band
center, the probability to find an eigenvalue is still appreciably different from zero.

It should be noted that by introducing random parameters in the Hamiltonian (2.12),
all physical quantities have to be statistically averaged over different disorder configura-
tions [KM93] in all analytical and numerical investigations that consider systems with
finite dimensions.

2.3. The scaling theory of conductivity

The theoretical understanding of the Anderson transition received a boost when Abra-
hams et al. formulated the scaling theory of localization [Abr79]. It assumes that the
critical behaviour of the DC conductivity σDC and the localization length ξloc close to
the transition can be described by only one scaling variable [KM93].

The theory consideres a generalized dimensionless conductance g,

g(L) =
G(L)

e2/2~
(2.19)
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2. Anderson metal-insulator transitions: Fundamentals

Figure 2.6.: Phase diagram of disorder for three different continuous probability distri-
butions for the random site potentials εi. From [BSK87].

and defines the quantity

β(g(L)) =
d ln g(L)

d lnL
, (2.20)

which is sometimes called Thouless number [LT78]. L is the longitudinal system size of
a d-dimensional hybercubic lattice with N = Ld lattice sites (lattice constant a ≡ 1). g
is understood as a measure for the amount of disorder here, being large when disorder
is small, and conversely [LT85].

In the limit of large g (vanishing disorder), the classical relation between conductance
G and conductivity σDC is recovered (given a cubic system, N = L× L× L):

G(L) = σDCL
d−2 . (2.21)

So for β(g) it follows
lim
g→∞

βd(g) = d− 2 . (2.22)

For small g (large disorder), the wavefunctions are assumed to be exponentially local-
ized. The dimensionless conductance is then

g = gae
−αL , (2.23)

and β(g) becomes

lim
g→∞

βd(g) = ln
g

ga(d)
, (2.24)
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Figure 2.7.: The function β(g) for 1D, 2D and 3D systems. From [Abr79].

with the constant ga ≈ 1.
The curve β(g) is sketched in figure 2.7 as a function of g for 1D, 2D and 3D systems.

A positive value of β reflects a metallic scaling behavior, where the conductivity increases
with system size L, while a negative value indicates the expected scaling behavior in the
presence of localized states. Only the curve for systems with d > 2 dimensions crosses
the x-axis at a critical value gc (fixed point), indicating a phase transition from metal to
insulator. This means that at least for systems belonging to the orthogonal symmetry
class (see section 2.4), systems of lower dimensionality than d = 3 do not show an AMIT,
which is one of the most important results of the scaling theory of localization.

The second important conclusion is that the Anderson transition is a second order
phase transition. The localization length ξloc of a state is the exponential (asymptotic)
decay length of its envelope [KM93, EM08],∣∣∣ψ2(r)

∣∣∣ ∼ e
−|r−r0|

ξloc ψ(r) = f(r)e−r/ξloc . (2.25)

In analogy with second-order phase transitions known from thermodynamics, the DC
conductivity σDC (on the metallic side) and the localization length ξloc (on the insulating
side) behave like

σDC ∝ (E − EM)s (2.26)

ξloc ∝ |E − EM|−ν (2.27)

near the mobility edge EM. It has been confirmed that the two exponents s and ν are
equal in three-dimensional systems [EM08]. This is consistent with Wegner’s scaling law
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[vL00],

s = ν(d− 2) . (2.28)

2.4. Symmetry classification of random systems

Based on the ideas of random matrix theory (RMT) [Wig51], Dyson introduced a classi-
fication scheme (Wigner-Dyson scheme) for ensembles of random Hamiltonians [Dys62].
It is immediately clear that RMT is closely related to the physics of disordered electronic
systems, as the matrix representation of a random Hamiltonian contains random ma-
trix elements. The Wigner-dyson scheme consideres the invariance of the system under
time-reversal symmetry (TRS) and under spin symmetry, leading to three symmetry
classes: Orthogonal, unitary and symplectic [EM08]. For fixed dimensionality d, Hamil-
tonians belonging to the same symmetry class share important features, especially do
their critical exponents ν agree (universality class).

If the Hamiltonian is invariant under time-reversal and spin symmetry, as it is the case
for the Anderson model (2.12), its matrix representation is a real symmetric matrix,

Ĥ = ĤT . (2.29)

The T here corresponds to the transpose of the matrix. Thus, it is said to belong to
the orthogonal symmetry class, and the Hamiltonian to be invariant with respect to the
orthogonal group SO(N).

If the Hamiltonian contains terms breaking TRS, for example describing the coupling
to an external magnetic field or magnetic impurities, the matrix representation will
contain complex matrix elements. Hence, the matrix becomes hermitian,

Ĥ = Ĥ† . (2.30)

So the Hamiltonian is invariant with respect to the unitary group SU(N). This is the
case for our effective model (5.2) for a non-zero exchange coupling, J > 0.

If the Hamiltonian breaks spin-rotation symmetry, for example by introducing spin-
orbit coupling, but does not break TRS, it belongs to the symplectic symmetry class, so
that its matrix representation fulfills the symmetry relation

Ĥ = σyĤ
Tσy . (2.31)

σy is the second Pauli matrix (5.3). The Hamiltonian is then invariant with respect to
the symplectic group Sp(2N). Even 2D systems can show a metal-insulator transition
if they belong to the symplectic class [ASO04, ASO06].

Not all disordered electronic systems conform to one of the three Wigner-Dyson classes
(only if a constant energy shift does not alter the dynamics of the system). Examples
have been found which fall into different, “non-conventional” symmetry classes, like
chiral classes and Bogoliubov-de-Gennes classes [EM08].
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Figure 2.8.: Examples for numerically calculated wave functions of the Anderson model
(2.12) near the band center E = 0 on large lattices L = 120. (a) An extended
state, W/t = 15. (b) A critical state, W/t = 16.5. (c) A localized state,
W/t = 18. The volume of the small cubes is proportional to |ψ|2, their
color and opacity is proportional to − logL

∣∣ψ2
∣∣. With kind permission of

the authors [RVSR11].

2.5. Multifractal behavior of critical states

It has been found that at the critical point of the AMIT, the wave functions show
multifractal behavior [CP86, SG91, GS92]. This means that scaling exponents depend

on the moment q of the wave function intensity (WFI), 〈
∣∣ψk(r)

∣∣2q〉. The moments are
closely related to the generalised inverse participation ratios (IPR) [EM08, Jun10],

Pq =

∫
dd r

∣∣ψ(r)
∣∣2q , (2.32)

so that 〈
Pq
〉

= Ld
〈∣∣ψ(r)

∣∣2q〉 , (2.33)

where the angle brackets 〈. . . 〉 represent the ensemble average. It has been found that
the IPR show an anomalous scaling behavior at criticality,〈

Pq
〉
∼ L−τq . (2.34)

The τq are sometimes called mass exponents and represent a continuous set of exponents.
Figure 2.8b shows an example of a critical eigenstate of the Anderson model (2.12) which
shows multifractal behavior. Using multifractal analysis (MFA), the MIT can be studied
in great detail, yielding the critical parameters with high precision [RVSR11].
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One can introduce fractal dimensions Dq via [EM08]

τq = Dq(q − 1) . (2.35)

A perfectly extended state (similar to a plane wave) has Dq = d, and a perfectly localized
state Dq = 0, i.e. there is no q-dependence and hence no multifractality. Near the critical
point, Dq is a function of q with values between 0 and d, so the wave functions are showing
multifractal behavior. It can be helpful to “split off” the normal dimensions d from the
anomalous dimensions ∆q [EM08], by defining

τq = d(q − 1) + ∆q . (2.36)

By definition, ∆0 = ∆1 = 0 [EM08].

2.5.1. The singularity spectrum

The singularity spectrum f(α) is the Legendre transform of the mass exponents5 τ(q)
[EM08],

τ(q) = qαq − f(αq) , αq =
dτ(q)

dq
. (2.37)

From basic properties of the Legendre transformation it follows

q =
df(αq)

dαq
. (2.38)

In the following, the index q of the quantity αq is not written explicitely. Nevertheless
it should be remembered that α is related to q via the Legendre transform (2.37). α is
also the negative ratio of the logarithmic WFI and the logarithmic system size L [EM08],

α = − log|ψ|2

logL
. (2.39)

It is important to understand the meaning of the singularity spectrum: f(α) is the
fractal dimension of those points r in space where the WFI scales like [EM08]∣∣ψ(r)

∣∣2 ∼ L−α . (2.40)

At every point r of the system (e.g., the sites of a lattice), the WFI of a critical state
may scale with another exponent α. There is a whole distribution of values α, each
corresponding to another fractal dimension Dq ∈ [0, d]. For an insulator, Dq = 0, so the
singularity spectrum should become one with the x-axis, f(α) = 0 for all α. Another
viewpoint is that on a lattice, the number of lattice sites where (2.40) is fulfilled is equal
to Lf(α) (for a lattice spacing a ≡ 1) [EM08].

5As the mass exponents τq form a continuous set of exponents, they can be regarded as a continuous
function of q.
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2.5.2. Weak multifractality limit

In the weak multifractality limit, the anomalous dimensions can be approximated as
[EM08]

∆q ≈ γq(q − 1) , γ � 1 , (2.41)

so that the mass exponents become

τq ≈ d(q − 1)− γq(q − 1) . (2.42)

Via the Legendre transformation (2.37) it follows

f(α) ≈ d− (α− α0)2

4(α0 − d)
(2.43)

and
α0 = d+ γ . (2.44)

So in the weak multifractality limit, the singularity spectrum is exactly parabolic, with
the maximum at the point (α0, d). The distribution of α is then [KMV09]

P (α) = L
− (α−α0)2

4(α0−d) . (2.45)

Figure 2.9 shows a schematic plot of the singularity spectrum in the weak multifractality
limit. For a perfect metal, the singularity spectrum is a δ-function at α = d. For increas-
ing disorder, the δ-function turns into a parabola, and the position of the maximum α0

shifts to higher values α0 > d. The maximal value is f(α0) = d. So at least in the weak
multifractality limit, there are always points r (lattice sites) where the intensity scales
like

|ψ|2 ∼ L−α0 , (2.46)

and the fractal dimension at these points is Dq = f(α0) = d, like it is for a metal. L−α0

is also called the typical value of the WFI, as it is the most probable one according to
(2.45).

The ε-expansion has been used by Wegner to estimate the anomalous dimensions ∆q

in d = 2 + ε dimensions [Weg87b]. The 4-loop results for the orthogonal and the unitary
symmetry classes read [EM08]

∆O
q = q(1− q)ε+

ζ(3)

4
q(q − 1)(q2 − q + 1)ε4 +O

(
ε5
)

,

∆U
q = q(1− q)

√
ε

2
− 3

8
q2(1− q)2ζ(3)ε2 +O

(
ε5
)

,

(2.47)

with ζ(3) ≈ 1.202 being Riemann’s zeta function [BSMM00]. Keeping only the leading
terms, the approximate parabolic form of ∆q is retained, with γ = ε for orthogonal
symmetry and γ =

√
ε
2 for unitary symmetry.
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Figure 2.9.: Schematic plot of the singularity spectrum f(α) in the weak multifractality
limit. From [EM08].

2.6. Metal-insulator transition in phosphorus-doped silicon

Various physical systems are known today to exhibit an AMIT, including even classical
wave systems like light and microwaves in resonators [LvTW09]. Also localization of
electronic wave functions in solids has been seen in a variety of materials. The standard
example for a transition driven by the combined effects of disorder and interactions is
phosphorus-doped silicon (Si:P) [SL97]. The transport properties near the transition in
this doped semiconductor are additionally influenced by the existence of local magnetic
moments. The MIT is expected at a certain critical dopant density nc [BK94]. There
is still no satisfying theory for such materials taking into account both disorder and
interaction, further complicated by the existence of local magnetic moments. In the
following, the physical situation in Si:P is illuminated, mostly in the picture offered by
Löhneysen [vL00], and selected experimental results are reviewed.

2.6.1. Classification of metals and insulators

Relevant for the conduction properties of a solid is the energetic position of the chemical
potential in relation to the electronic eigenstates (band structure) of the system. The
highest completely occupied band is called the valence band, the uppernext band the
conduction band. At zero temperature, the chemical potential is given by the Fermi
energy6EF. Up to EF, all electronic states are occupied. If EF lies within a bandgap, the
material is an insulator at zero temperature (band insulator, see figure 2.10b), whereas
if it lies inside a band, it can generally be regarded as a metal (see figure 2.10a).

There are other cases for which a material can become insulating: If the electron-
electron interaction (Coulomb repulsion) is strong, electrons repell each other, and it is

6 For non-zero temperatures, the chemical potential is usually referred to as the Fermi level in semi-
conductor physics.
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unfavorable for them to occupy the same orbital (i.e., electrons with different spin). This
effect gives rise to the Mott-Hubbard transition [Mot67, Mot68], which is a correlation-
driven quantum phase transition. A simple method to describe the problem is given by
the Hubbard model [Hub63],

ĤH = t
∑
〈ij〉,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

c†i↑ci↑c
†
i↓ci↓ , (2.48)

where 〈i, j〉 captures all pairs of neighboring lattice sites between electrons may “hop”
with a probability proportional to |t|2, and ciσ denotes the annihilation operator of an
electron with spin σ at site i. U defines the strength of the local (on-site) interaction.
The effect of the strong local Coulomb repulsion on the band structure is illustrated
in figure 2.10c: For sufficiently strong interaction parameter U , a bandgap is opening
around the Fermi energy EF (Hubbard splitting), causing the material to become a Mott
insulator.

Yet another type of insulator is the Anderson insulator. For sufficiently strong disor-
der, there exist band regions which are populated by localized states. If the Fermi energy
EF happens to lie in one of those regions, the material is insulating (see figure 2.10d).
Regions of localized and extended states are separated by mobility edges EM. A simple
model to describe the AMIT is given by the Anderson model (2.12) discussed above in
section 2.2.

2.6.2. Conduction properties of semiconductors

A semiconductor is similar to a band insulator in the way that EF lies in between the
valence band and the conduction band, but is characterized by a rather small bandgap
of typically a few eV (see figure 2.11a). For T > 0 K, thermally activated electrons
are easily raised from the valence to the conduction band to allow for charge transport.
However, at T = 0 K a semiconductor is a perfect insulator.

By doping the semiconductor with atoms of another element, it is possible to tune its
transport properties. Two kinds of dopings are distinguished:

n-doping A certain concentration x of the host atoms is replaced by atoms providing
one or more excess electrons (donor atoms). This creates donor levels slightly
below the conduction band, which are occupied by electrons at zero temperature
(see figure 2.11b). At nonzero temperatures, these electrons are easily excited into
the conduction band, contributing to the charge carrier density of the material.

p-doping A certain concentration x of the host atoms is replaced by atoms missing
one or more electrons compared to the host atoms. This creates acceptor levels
slightly above the valence band, which are unoccupied at zero temperature (see
figure 2.11c). At nonzero temperatures, these levels are easily filled with valence
band electrons, leaving behind electron holes, contributing to the charge carrier
density of the material.
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Figure 2.10.: Schematical band diagrams for (a) a metal and different types of insulators:
(b) Band insulator, (c) Mott insulator, (d) Anderson insulator.
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Figure 2.11.: Schematical band diagrams for different types of semiconductors: (a) Un-
doped semiconductor, (b) n-doped semiconductor, (c) p-doped semicon-
ductor, (d) compensated semiconductor.
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(a) (b)

Figure 2.12.: Schematical plot of the hydrogen-like orbitals of phosphorus donors, for
(a) low and (b) high dopant concentration, at random positions within the
silicon bulk (gray).

If both types of dopants are present in a material, it can be compensated (see fig-
ure 2.11d). In a compensated semiconductor, the effects of donor and acceptor levels
cancel each other, so that the Fermi energy stays in the middle of the bandgap, just as
it is the case for undoped semiconductors.

2.6.3. Heavily doped semiconductors

In certain doped semiconductors, the additional electronic states introduced by the donor
atoms (donor levels) are situated close to the conduction band. If the concentration of
donors is low, the donor levels are strongly localized states, with similar energy but
far apart in space (see figure 2.12a). The overlap between them is exponentially small
[BK94]. In heavily doped semiconductors however, the distance between the donor states
is small, and the states are overlapping (see figure 2.12b). The situation is illustrated
in figure 2.12, where s-type (hydrogen-like) orbitals are assumed. This is a valid picture
for phosphorus dopants inside a silicon host (Si:P), which form exactly one additional
singly-occupied s-shell per dopant in the groundstate [BK94].

When the overlap between the hydrogenic donor states becomes intense, the Pauli
exclusion principle causes the donor levels to hybridize, and a so called impurity band
is forming (see figure 2.13b). This conforms to the common picture of band formation
in solids [Czy08]. The Fermi energy EF lies in the center of the impurity band, i.e. the
impurity band is half filled. Similar to the band of the Anderson model (see figure 2.2),
the impurity band may contain extended states in its center as well as localized states
in its tails, separated by mobility edges EM.
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Figure 2.13.: Schematical band diagrams for phosphorus-doped silicon: (a) For low donor
concentration, the singly-occupied donor states cause spin-1/2 moments
(red arrows). (b) For high donor concentration, an impurity band is form-
ing. Far enough on the metallic side of the transition, the moments have
vanished.

2.6.4. Emergence of magnetic moments in phosphorus-doped silicon

Phosphorus possesses one more valence electron than silicon. So in phosphorus-doped
silicon (Si:P), each P atom introduces one additional electron to the host material. The
Coulomb repulsion is sufficiently strong to account for a Hubbard-like splitting of the en-
ergy levels, as it is known from the Hubbard model (2.48). This makes double occupancy
of the donor levels energetically unfavorable, and explains why the donors are mostly
occupied by a single electron in Si:P [BK94]. Thence, the localized singly-occupied donor
levels give rise to local magnetic spin-1/2 moments. The existence of magnetic moments
can be proven experimentally by observing the magnetic susceptibility χ(T ) [SL97] (see
figure 2.14).

The formation of a single magnetic moment can be studied in the Anderson impurity
model [And61, Phi12]. It describes a single electronic band, which by itself contains the
usual (extended) Bloch states ψkσ(r) (cf. section 2.1) with spin σ. Furthermore, a single
impurity is considered, having a single impurity level d with energy εd. Hopping from
and to the lattice sites surrounding the impurity site is allowed by a hopping matrix
element Vkd. The impurity can either be singly or doubly occupied. The latter costs
an extra energy U , exactly like in the Hubbard model (2.48). The Hamiltonian of the
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Figure 2.14.: Measurements of the temperature dependence of the magnetic suscepti-
bility of phosphorus-doped silicon in a magnetic field of B = 3 mT, for
different dopant concentrations N . From [SL97].

Anderson impurity model reads [Phi12]

ĤAI =
∑
kσ

εkc
†
kσckσ +

∑
σ

εdc
†
dσcdσ

+
∑
kσ

Vkd

(
c†kσcdσ + c†dσckσ

)
+ Uc†d↑cd↑c

†
d↓cd↓ . (2.49)

ck,σ and cd,σ are annihilation operators for electrons with spin σ in the band and in
the impurity level, respectively. Depending of the value of U in relation to the hopping
matrix element Vkd and the position of the impurity level εd, the system may favorize
single occupancy and hence the formation of a local magnetic moment or not [Phi12].

Under heavy doping (high donor concentration), the donor states hybridize and form
an impurity band. For strong Coulomb repulsion, the whole impurity band is splitted
into two sub-bands (see figure 2.15), separated by a soft Hubbard gap [vL00]. The
random positioning of the dopant atoms increases the disorder. Both, the occupied sub-
band below the Fermi energy and the unoccupied sub-band above it, contain localized
as well as extended states, separated through mobility edges. This explains why the
number of magnetic moments observed in Si:P is usually smaller than the number of
donor levels [vL00] and depends on the dopant density n.

For experiments, the random distribution of dopants is essential. Clustering or short-
range ordering would affect the MIT. The statistical distribution of donor atoms in Si:P
can be checked by scanning tunneling microscopy (STM) [vL00]. To prove the existence
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Figure 2.15.: Evolution of the impurity band density of states when crossing the metal-
insulator transition in phosphorus-doped silicon. From [vL00].

local magnetic moments, different quantities like the magnetization, magnetic resonance
or the specific heat are experimentally accessible [PSBR86, vL00].

2.6.5. MIT in phosphorus-doped silicon

Figure 2.15 sketches the process that leads to the MIT in Si:P as envisioned by Löhneysen
[vL00]. This situation does not occur in compensated semiconductors like Si:(P,B) (ad-
ditional boron-doping), as there the Fermi energy does not lie within one of the impurity
bands. For low dopant density n, the two Hubbard sub-bands are well separated. The
Fermi energy lies in the gap between the sub-bands, hence the material is insulating at
T = 0 K like in a band insulator. As n is increased, the sub-bands have to accomodate
a rising number of impurity states, thus they broaden.

At a certain dopant density n0 ≈ 2.7 · 1018 cm−3 [vL00], the broadening sub-bands
start to overlap. At this point, the Fermi energy no longer lies in the bandgap, but
nevertheless the material is still insulating, as in the shallow band tails, only localized
states exist (Anderson insulator). The gap is a soft Coulomb gap, with a DOS behaving
like ρ(E) ∼|E − EF|2 [vL00]. At n0, the density of magnetic moments is highest.

Reaching the critical dopant density nc ≈ 3.52 ·1018 cm−3 [vL00], the overlap between
the two sub-bands has reached an extent for which the region of localized states around
the Fermi energy has disappeared, as the value of the DOS at the Fermi energy has
increased, and the mobility edges surrounding the Fermi energy have converged on its
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position. The Fermi energy now resides within a region of conducting impurity states,
and thus the MIT has been crossed. However, there still exist localized impurity states in
the outer tails of the impurity band, which still carry magnetic moments. This explains
why magnetic moments have been found experimentally even on the metallic side of the
MIT in Si:P, up to dopant densities of n ≈ 2nc [MSB89, SL97] (cf. figure 2.14).

Silicon solidifies in the diamond structure, with a lattice spacing of a = 0.543 nm.
There are eight lattice sites in the conventional unitcell of the diamond structure. The
particle density of silicon is therefore nSi = 5.000 ·1022 cm−3. The critical dopant density
has been experimentally determined to nc ≈ 3.52 · 1018 cm−3 [SL97]. This corresponds
to a fraction of 0.007 at% of the silicon atoms being replaced by phosphorous atoms. For
comparison, the solubility limit of phosphorus in silicon is 2.4 at% [vL00] (at standard
pressure).

The density of dopants carrying a localized moment lies in the range 1017..1018 cm−3

in the insulating regime (n < nc), and can drop down to about 1016 cm−3 in the metallic
regime (n > nc) [vL00]. So, realistic values for the fraction nM of dopants carrying a
local moment range from a few percent on the metallic side to several tens of percent
on the insulating side of the transition. In our calculations (see chapter 5), we assume a
fixed fraction of nM = 5 %.

Experimentally, it can be difficult to vary the dopant concentration n homogeneously
across the critical disorder strength, for it requires the synthesis of different samples. An
alternative approach is given by the application of uniaxial stress to a specimen that is
slightly on the insulating side of the critical donor density nc [vL00]. The MIT can then
be obtained by considering various experimentally accessible quantities. Figure 2.16
shows the result of measurements of the temperature-dependence of the conductivity
for very small temperatures [RMP+83] and different dopant densities n. Here, a critical
dopant density of nc ≈ 3.74 · 1018 cm−3 was found. The positive slope of the curve for
n = 7.0 ·1018 cm−3 in the double-log plot clearly indicates metallic behavior. The curves
for n = 3.84 · 1018 cm−3 and n = 3.75 · 1018 cm−3 feature a negative slope, but still
converge to a finite value for T → 0, and are therefore still identifyable as metallic, with
the latter being very close to the MIT. For n = 3.70·1018 cm−3, the behavior has changed
drastically, showing a diverging curve as T → 0, which is attributed to an insulator.

Experimentally, the localization length exponent ν on the insulating side and the
conductivity exponent s on the metallic side of the transition (2.27) have both been
determined to values close to 1 [LvTW09]. In the past, the exponents for uncompensated
doped semiconductors have first been found to be rather 0.5 (the “exponent puzzle”)
[KM93], but these results were later be clarified to lead to an exponent of 1 as well
[LvTW09].

The MIT in Si:P has still not been fully understood on theoretical grounds. The most
promising approach consists in the Anderson-Hubbard model [vL00], which features the
essential elements of both disorder and on-site Coulomb interaction:

ĤAH =
∑
iσ

(εi − µ) c†iσciσ +
∑
ijσ

tij c
†
iσcjσ + U

∑
i

c†i↑ci↑c
†
i↓ci↓ . (2.50)

ciσ is the annihilation operator for an electron with spin σ in the groundstate of the
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2.6. Metal-insulator transition in phosphorus-doped silicon

Figure 2.16.: Experimental results for the temperature-dependent resistivity ρ in
phosphorous-doped silicon, for different donor densities n. From
[RMP+83].
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2. Anderson metal-insulator transitions: Fundamentals

dopant atom at site i. As before, εi is a random site potential, and tij is a hopping
amplitude. µ is the chemical potential here, and U is the energy that has to be paid for
double occupancy of a site, just as in the Hubbard model (2.48).

In order to simplify the description, we consider a variant of the Anderson-Hubbard
model (see chapter 5), replacing the Hubbard term by one describing an exchange cou-
pling to classical magnetic spin-1/2 impurities. We have thus chosen to separate the
dynamics of the itinerant impurity band electrons from the local moments (two-fluid
model) [MSB89, Sac89], while in real Si:P, the local moments are caused by the itinerant
electron spins themselves [PGBS88].
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3. Numerical methods

Studies of the problem of localization and metal-insulator transitions have to rely largely
on numerical simulations, as adequate analytical techniques are still rare in this field of
research [Nob77]. In this chapter, the numerical methods used in this thesis to study
the effective model for the impurity band electrons in Si:P are described (see chapter 5).

In section 3.1, a data structure for defining effective tight binding supercells is in-
troduced, including an explanation of the algorithm to obtain the tight binding matrix.
Such a matrix can then be used within the kernel polynomial method (KPM) [WWAF06]
to calculate the local density of states (LDOS) and the average density of states (ADOS).
The KPM algorithms used in this work are explained in section 3.2.

The LDOS is used to obtain two ensemble averages: The geometric average (GLDOS)
and the arithmetic average (ALDOS) of the LDOS. The algorithms used to obtain these
ensemble averages are illustrated in section 3.3, including the method used to account for
the statistical error. The chapter concludes with some test calculations and performance
checks in section 3.4, where we compare our results with those by others who have also
used the KPM to calculate the GLDOS and the ADOS [SF09].

In appendix B, a few additional remarks regarding the numerical methods and further
implementation details are given.

3.1. Hierarchical data structure for effective tight binding
supercells

Effective tight binding models (ETBM), written in site-diagonal basis, have the potential
to describe any microscopic structure (nanostructure) that consists of single “atomic”
sites (not necessarily the sites of a lattice). At every site, one or more states can be
defined, each characterized by a certain potential energy. Hopping transport is allowed
by defining hopping matrix elements between the states.

In general, it is sufficient to be able to place sites at specific coordinates somewhere
within the supercell, and to define hoppings between them. However, both organization
and performance are greatly improved if some or all of the sites are arranged on a periodic
grid. By placing as many sites as possible on a lattice, which is defined by repeating
a small unitcell a specific number of times in each spatial dimension, not only memory
usage is minimized, but also computational effort to retrieve the tight binding matrix.

This is why we decided to include the concept of finite lattices into the object-oriented
framework used to define tight binding supercells, which is implemented by the classes
Lattice and SparseLattice as described below. The usage of unitcells that are repeated
periodically in space does however not exclude the ability to define random potentials
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Figure 3.1.: Illustration of the hierarchical data structure for defining effective tight bind-
ing nanostructures.

and hopping parameters. These can still be defined by defining rules for the generation of
random numbers from a probability distribution instead of setting the matrix elements
with constant values. For the most part, the performance gain by considering sites
sitting on a lattice can be preserved even in the presence of disorder.

3.1.1. General data layout

Any nanostructure on the atomic level can naturally be described by a hierarchical data
structure. The root element of this structure is the SuperCell object, which holds all
information about the system. The SuperCell object can hold any number of single
Site objects, which can be placed anywhere inside the d-dimensional supercell, and any
number of Lattice or SparseLattice objects. In the supercell object, also the number
of spatial dimensions d is specified, as well as the kind of boundary conditions that
should be applied to each of the dimensions (static, periodic, or antiperiodic boundary
conditions). Figure 3.1 illustrates the hierarchical layout of the data structure.

In most solid state problems, a periodic lattice is considered. The lattice objects ease
the description of the system considerably. On most occasions (like in our work), there
is no need to define anything but a single Lattice object within the SuperCell object.
However, defining multiple Lattice objects could have its applications when ETBM for
solid state nanostructures are investigated, e.g. quantum wells, quantum dots [Mou07],
nanorods, or when interfaces between different kinds of lattice structures are of interest.
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3.1. Hierarchical data structure for effective tight binding supercells

Adding single Site objects to the supercell could be practical if one is interested in
surface effects including adatoms, or in interstitial impurities.

Lattice and SparseLattice objects are defined by a unique UnitCell object, which
defines a convential unitcell (in general of rhomboidal shape) within the d-dimensional
supercell. Furthermore, the lattice object has to contain the information about how
often the unitcell is repeated in space in each of the spatial dimensions. The unitcell can
hold any number of Site objects. As usual, the position of the sites is defined here in
relative terms to the shape of the unitcell (the basis vectors spanning the lattice). Each
Site object can hold any number of Entity objects, which stand for the states located
at that site (i.e., orbitals), as it is usual for an ETBM written in site-diagonal basis.

The so defined data structure is still missing information about the existing hopping
matrix elements. To allow for hopping transport between the orbitals (to be more
specific, between any pair of Entity objects), different facilities exist to store that kind of
information on various levels within the hierarchical data structure. First, the SuperCell
object allows for the definition of hoppings between the states at different single sites
that are defined directly within it. Far more important for most applications is a special
facility of the Lattice object, which is the so called Neighbor object. It defines a
whole class of interactions between certain copies of the unitcell within a lattice. Each
Neighbor object is characterized by some integer vectors specifying the direction of
hopping, i.e. to which neighboring unitcells the hopping shall occur (nearest neighbors,
next-nearest neighbors etc.). To be complete, also hoppings within UnitCell and Site

objects can be defined, the latter to allow for a local (on-site) interaction.

As mentioned earlier, each site potential and each hopping can be set with either
a constant value, or with a rule specifying how random values should be drawn from
a probability distribution. Each time the tight binding matrix is requested from the
SuperCell object, a set of random values is generated, which are placed on the cor-
responding matrix elements accordingly. In this way, a separation is achieved between
the abstract definition of the ETBM and the generation of disorder configurations in
form of corresponding tight binding matrices. The SuperCell object can be stored (e.g.
in a file) and is an abstract description of a tight binding system in the sense that an
arbitrary number of disorder realizations can be drawn from it at any time.

To complete the description, the difference between Lattice and SparseLattice ob-
jects has to be mentioned. While the Lattice objects assumes that the unitcell is
repeated uniformly in space, i.e. placed at every position where a lattice vector is point-
ing, in a sparse lattice, the unitcell is only placed on a certain subset of these positions.
Example applications are percolation problems [SF09], or the effective dilute Heisenberg
model [CB10, CBB11, CBKB12], or in general all problems where only a certain fraction
of lattice sites is occupied by a state.

3.1.2. Constructing the tight binding matrix

In most numerical applications, the goal of the definition of a tight binding supercell is the
generation of the corresponding tight binding matrix, which is the matrix representation
of the underlying Hamiltonian. Usually many quantities of interest can be deduced
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3. Numerical methods

from the matrix, using various approximative numerical methods. One example is the
KPM, which we use to calculate the DOS and the LDOS (see section 3.2). Using the
hierarchical data structure described above, the construction of the matrix follows a
clear scheme, which is illustrated in figure 3.2.

The matrix is constructed using a top-to-bottom approach. When the tight binding
matrix is requested from the SuperCell object, it cycles all its site and lattice definitions
and requests their corresponding submatrices. Each Lattice object requests the sub-
matrix of its unitcell, and then stacks them on the main diagonal, corresponding to the
specified number of times the unitcell is repeated in space. Certain off-diagonal blocks
are filled with hopping matrices originating from the Neighbor objects, which naturally
share its size and structure with those of the unitcell matrices. The SuperCell object
then again stacks all submatrices from the lattices and single sites on the main diago-
nal, and again fills off-diagonal blocks with possibly defined hoppings between different
objects in the supercell.

The mapping of the matrix indices to the corresponding states is fixed by the order
in which the sites and lattices are defined in the SuperCell object, as well as by the
order of the dimensions used in the Lattice object. It is important to know the precise
mapping in systems which are not completely homogeneous to ensure the identification of
important microscopic features (nanostructures etc.). The recommended output format
of the matrix is one of the available sparse-matrix formats, as tight binding matrices are
usually sparsely occupied. The most convenient format for methods including a matrix-
vector multiplication (as it is the case for the KPM) is the compressed-sparse row (CSR)
format.

Using only Lattice objects, the performance generating the matrix scales linearly
with the system size N (number of unitcells), even when random potentials are included
(see figure 3.3). Deviations are only seen for very small system sizes, as every computer
algorithm possesses a certain overhead which does not depend on the system size. In
figure 3.3, OPT stands for an optimized algorithm which is specialized on one-band tight
binding models on a d-dimensional hypercubic lattice with the restriction to nearest
neighbor hoppings1. STD is the standard algorithm that can handle any kind of ETBM,
including long-range hoppings etc.

3.2. The kernel polynomial method

The kernel polynomial method (KPM) is a polynomial expansion technique based on
Chebychev polynomials [WWAF06]. The latter come in two flavors, first kind and second
kind. For the calculation of the local density of states (LDOS) and the density of states
(DOS), only the first kind is of interest. On a lattice with lattice sites i, the LDOS reads

ρi(E) =

Nk∑
k=1

∣∣〈k|i〉∣∣2 δ(E − Ek) , (3.1)

1The matrix elements can nevertheless be set with random numbers.
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3.2. The kernel polynomial method
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Figure 3.2.: Scheme illustrating the generation of the tight binding matrix from the
hierarchical data structure.
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Figure 3.3.: Performance check of the algorithm for constructing the tight binding ma-
trix, using either the standard algorithm (STD) or the optimized algorithm
(OPT). The inset is showing a double-logarithmic plot of the same data.

where Nk is the number of eigenstates. Note that in a one-band tight binding model
without spin, Nk = N , where N is the number of lattice sites. The Chebychev polyno-
mials Tm(x) of first kind are defined as [WWAF06]

Tm(x) = cos(m arccosx) . (3.2)

They are defined on the interval [−1, 1] only. Using the expansion

f(x) =
1

π
√

1− x2

µ0 + 2
M∑
m=1

µm Tm(x)

 , (3.3)

the function f(x) can be approximated to arbitrary order, by taking into account a finite
number M of coefficients µm (the truncation limit). The expansion (3.3) approaches
the exact result for M → ∞, but often, a reasonable result is already obtained for
M ≈ 100..1000, depending on the problem.

The coefficients µm of the expansion (Chebychev moments) depend on the target func-
tion f(x), i.e. the spectral quantity to approximate, which in our case is either the LDOS
or the DOS, as detailed in section 3.2.4. The moments are defined as [WWAF06]

µm =

1∫
−1

f̃(x̃)Tm(x̃) dx̃ , (3.4)
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3.2. The kernel polynomial method

where f̃(x̃) is the rescaled version of the spectral quantity f(x) so that its spectrum fits
into the interval x̃ ∈ [−1, 1].

The KPM scheme – and with it the algorithm – can be devided into several consecutive
steps:

1. Rescale the matrix H so that its spectrum fits into the interval [−1, 1].

2. Choose a suitable start vector.

3. Iterative calculation of the Chebychev moments (up to the truncation limit M).

4. Kernel damping.

5. Reconstruction of the target function.

6. Inversly rescale the target function.

The steps are explained in more detail in the following sections.

3.2.1. General code layout

Below is an example of what an actual implementation of a KPM algorithm could look
like. Like all code examples showed in this thesis, it resembles “almost” working Python
code [Oli07] that originates from our actual implementation2, but has been stripped
from anything that is not totally necessary for understanding the algorithm itself (issues
like datatype conversion, error handling, documentation, parallelization directives etc.).

def ldos(mat, state, limit, enum, erange):

rank = mat.shape[0]

rmat, rparams = rescale(mat, erange)

renerg = get_energ(enum, rparams)

start = svect(rank, state)

moments = mom(rmat, start, limit)

moments = kernel(moments)

dens = rcstr(moments, enum)

energ = inverse_rescale(renerg, rparams)

return energ, dens

The first step is to rescale the Hamiltonian matrix mat according to the given energy
range erange so that the original spectrum fits into the interval [−1, 1]. rparams contains
the two parameters a and b that define the rescaling (see section 3.2.2 for details).
Knowing these parameters, also the rescaled energy values renerg can be created, which
also depend on the required number of energy intervals enum.

The next step is to choose the start vector. rank defines its length, and state selects
one of the eigenstates of the Hamiltonian, i.e. the lattice site for which the LDOS is to
be calculated.

2The full source code can be found at http://github.com/proggy/kpm/.
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The most time consuming part is usually the calculation of the Chebychev moments
moments. The algorithm does not only depend on the rescaled matrix rmat and the
start vector start, but also on the chosen truncation limit limit. As soon as the list of
moments has been obtained, the Jackson kernel can be applied. Now the LDOS dens is
reconstructed using the standard reconstruction formula (3.3) (we do not use the fast-
Fourier transform (FFT) for optimization) and the energy values energ are scaled back
to the original spectrum of the matrix using the rescaling parameters rparams.

3.2.2. Rescaling the matrix

The Chebychev polynomials (3.2) are defined only on the interval [−1, 1]. To be able
to approximate a function using the Chebychev expansion (3.3), it must be made sure
that the argument does not exceed this interval. In case of the spectral quantities of a
matrix (or operator) H, this means that its spectrum must be rescaled to fit into the
interval [−1, 1]. This may be done by a simple linear transformation [WWAF06],

H̃ =
H − Ib
a

, (3.5)

Ẽ =
E − b
a

, (3.6)

(3.7)

where I is the identity matrix. Given a certain spectral range [Emin, Emax], the rescaling
factors a and b can be obtained using [WWAF06]

a =
Emax − Emin

2− ε
, (3.8)

b =
Emax + Emin

2
. (3.9)

(3.10)

Note that a and b may have to possess the dimension of energy to make Ẽ a dimensionless
quantity, i.e. we may measure it in terms of the constant hopping parameter t.

Since the spectrum is generally unknown, one can either make an “educated guess”, or
use existing methods to determine the extremal eigenvalues of a matrix, for example the
Lanczos method [Lan51]. To be entirely sure that the (numerically estimated) spectrum
will not exceed the interval [−1, 1], a small value ε can be introduced that should be
adjusted to the smallest representable floating point value of the computer system, or
to the accuracy of the estimated spectral range. Alternatively, an overestimation of the
spectral range is usually a good idea, also to avoid unwanted effects by the spectral
dependence of the resolution (see section 3.2.7). In our calculations, we choose a = 24t
and b = 0 for all our calculations. This also assures that the densities of all systems
possess the same energy discretization, which simplifies the subsequent data analysis.
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3.2. The kernel polynomial method

3.2.3. The start vector

This step is especially simple in the case of the KPM algorithm for the LDOS, applied
to the case of a simple tight binding system (2.1). As such a tight binding Hamiltonian
is usually written in terms of a basis with states each located at one of the lattice sites,
the start vector just has to be a vector containing only one nonzero element at the index
i of the respective lattice site (which is equal to one due to normalization). So the start
vector is of the form

φ0 = (0, 0, . . . , 1, . . . ) . (3.11)

Considering a model with spin, the index needs to include both site and spin index, i.e.
φ0 ≡ |iσ〉. The index mapping must be unambiguous, but the general form of the start
vector remains the same.

For the calculation of the DOS, a random state is chosen, which is explained below
(section 3.2.4).

3.2.4. Calculation of Chebychev moments

The recursive algorithm to calculate the Chebychev moments is the central part of every
KPM algorithm. At least for Chebychev expansions in one variable, and for typical
matrix sizes and truncation limits, it is also the numerically most expensive calculation
step.

It can be shown (see appendix A.1) that the recursive relations

T0(x) = 1 , T1(x) = x ,

Tm+1(x) = 2xTm(x)− Tm−1(x) , (3.12)

hold for the Chebychev polynomials of first kind (3.2) [WWAF06]. So the state

|φm〉 = Tm(H̃) |φ0〉 (3.13)

can be obtained iteratively using

|φ1〉 = H̃ |φ0〉 , |φm+1〉 = 2H̃ |φm〉 − |φm−1〉 , (3.14)

up to the desired truncation limit M [WWAF06].
For moments of the form of an expectation value of Chebychev polynomials in H̃, like

it is the case for the LDOS (3.20) or the DOS (3.25), a more efficient variant of the
recursive relations (3.14) exists [WWAF06],

µ0 = 〈φ0|φ0〉 ,

µ1 = 〈φ1|φ0〉 ,

µ2m = 2 〈φm|φm〉 − µ0 ,

µ2m+1 = 2 〈φm+1|φm〉 − µ1 , (3.15)

which yields two moments per loop. So a factor of two is gained in terms of efficiency.
Here is a pseudo-code example to evaluate (3.15):
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3. Numerical methods

mu[0] = dot(phi0, phi0) # dot product

phi1 = matvec(mat, phi0) # matrix-vector multiplication

mu[1] = dot(phi1, phi0)

for m in range(1, limit/2): # assume an even truncation limit

phi2 = matvec(mat, phi1) - phi0[k]

mu[m*2] = 2 * phi1[k] * phi1[k] - mu[0]

mu[m*2+1] = 2 * phi2[k] * phi1[k] - mu[1]

temp = phi0; phi0 = phi1; phi1 = phi2; phi2 = temp # swap pointers

This again is just a brief example for the general form of the algorithm to compute the
Chebychev moments, which leaves out many possible improvements in terms of efficiency
which may be applied to the code. Most of all, an actual implementation should store
the matrix in compressed sparse-row (CSR) format for the matrix-vector multiplication
to be most efficient.

From the above code example it becomes apparent that using an iterative algorithm
based on the recursive relations (3.15), the memory usage can be kept to a minimum.
Only three state vectors phi0, phi1 and phi2 of length N (the rank of the matrix) have
to be stored, plus the list of moments mu with length M and the matrix mat. If the tight
binding matrix mat or the start vector phi0 contain complex elements, also the vectors
phi0, phi1 and phi2 have to be able to hold complex numbers, which roughly doubles
the memory demands.

Chebychev moments for the LDOS

The Chebychev moments for the rescaled LDOS ρ̃i(Ẽ) (normalized with respect to the
rescaled spectrum Ẽ) at lattice site i read [WWAF06]

µ(i)
m =

1∫
−1

ρ̃i(Ẽ)Tm(Ẽ) dẼ (3.16)

=
1

N

N−1∑
k=0

∣∣〈i|k〉∣∣2 1∫
−1

Tm(Ẽ) δ(Ẽ − Ẽk) dẼ (3.17)

=
1

N

N−1∑
k=0

∣∣〈i|k〉∣∣2 Tm(Ẽk) (3.18)

=
1

N

N−1∑
k,k′=0

〈i|k〉 〈k|Tm(H̃)|k′〉 〈k′|i〉 (3.19)

=
1

N
〈i|Tm(H̃)|i〉 , (3.20)

where the system size N is identical to the rank of the rescaled tight binding matrix H̃
and the number of its eigenvalues Ẽk. So the KPM algorithm for moments of the form
of simple expectation values (3.15) can be used to calculate the Chebychev moments for
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3.2. The kernel polynomial method

the LDOS. Note that for a non-disordered system, the LDOS at any site i is identical
to the DOS, so in that case, the calculation of the DOS breaks down to the calculation
of a single LDOS at an arbitrary lattice site.

Chebychev moments for the DOS

The Chebychev moments for the rescaled DOS ρ̃(Ẽ) (normalized with respect to the
rescaled spectrum Ẽ) read [WWAF06]

µm =

1∫
−1

ρ̃(Ẽ)Tm(Ẽ) dẼ (3.21)

=
1

N

N−1∑
k=0

1∫
−1

Tm(Ẽ) δ(Ẽ − Ẽk) dẼ (3.22)

=
1

N

N−1∑
k=0

Tm(Ẽk) (3.23)

=
1

N

N−1∑
k=0

〈k|Tm(H̃)|k〉 (3.24)

=
1

N
TrTm(H̃) , (3.25)

so it comes down to the calculation of a trace of expectation values, over all eigenstates
|k〉 of the system, i.e. over the whole Hilbert space. To avoid this, it is advantageous
to use an approximation to evaluate the trace, by averaging the moments over a small
number R� N of random states |r〉 (stochastic evaluation of the trace) [WWAF06],

µm ≈
1

NR

R−1∑
r=0

〈r|Tm(H̃)|r〉 , (3.26)

where for the random states |r〉, random-phase vectors of the form

|r〉 =

N−1∑
i=0

ξri |i〉 , ξri = eiφ , φ ∈ [0, 2π] (3.27)

are an excellent choice [WWAF06]. The number of random vectors R can often be kept
to a small fixed number, while the additional ensemble averaging which is needed anyway
for disordered systems can then be carried out to arbitrary accuracy. For the efficient
calculation of the expectation values, again the recursive relations (3.15) can be used,
using a random vector (3.27) as start vector. Note that to calculate the average density
of states (ADOS) of a disordered system, an ensemble averaging (arithmetic mean) over
densities of different disorder configurations has still to be added.
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Figure 3.4.: Damping effect of different kernels on spectra containing δ-functions (left)
or step functions (right). The truncation limit is M = 64. With kind
permission by the authors [WWAF06].

3.2.5. Kernel damping

If the Chebychev moments calculated above were used directly to reconstruct the target
function, the result would still suffer from oscillations near sharp features (discontinuities
or singularities), so called Gibbs oscillations [WWAF06]. To get rid of these oscillations,
it is possible to apply a kernel to the Chebychev expansion in order to smoothen the tar-
get function. Formally, this concept corresponds to a convolution of the target function
f(x) with a kernel [WWAF06]. For our present situation this means that the Chebychev
moments µm are multiplied by certain kernel factors gm that usually depend on the
truncation number M and on the order of the Chebychev moment m (and sometimes
on additional parameters).

The Dirichlet kernel resembles the trivial case where all kernel factors are equal to 1,

gD
m = 1 (3.28)

i.e. the Chebychev moments are not modified. Beyond the different choices, the best
known kernel for the calculation of the LDOS and the DOS is the Jackson kernel
[WWAF06],

gJ
m =

(M −m+ 1) cos πm
M+1 + sin πm

M+1 cot π
M+1

M + 1
. (3.29)

Figure 3.4 illustrates the damping effect of different kernels on spectra containing δ-
functions or step functions.
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3.2.6. Reconstruction of the target function

An outstanding property of the KPM is given by the fact that as soon as the Chebychev
moments µm are calculated, the spectral quantity of interest can be evaluated across
the whole spectrum at once, without much additional computational effort. We use
the standard form of the expansion (3.3) to reconstruct the target function, although
there exist ways to further improve the efficiency of this part of the algorithm [WWAF06].
Using the cosine-like form of the Chebychev polynomials, it is possible to use a fast cosine
transform (FCT) algorithm for the reconstruction of the target function by choosing a
cosine-like spectral variable. If no FCT algorithm is at hand, the problem can also be
mapped to an alternative form, so that a fast Fourier transform (FFT) can be used
instead. However, in the case of an expansion in only one variable, the performance gain
is negligible, as the dominant part of the calculation lies in the determination of the
Chebychev moments. So, we decided to use the standard form of the expansion (3.3) to
retrieve the LDOS. In (Python-based) pseudo-code, an example for the reconstruction
algorithm implementing equation (3.3) reads:

def std(moments, disc):

out = numpy.empty(len(disc))

for i in range(ndisc):

o[i] = mom[0]

for j in range(1, limit):

o[i] += 2 * mom[j]*cos(j * acos(dis[i]))

o[i] /= pi * sqrt(1 - dis[i] * dis[i])

return out

The energy discretization disc can be of any form, in contrast to FCT variants
of the reconstruction algorithm, which are usually based on cosine-like discretizations
[WWAF06].

3.2.7. Spectral dependence of the energy resolution

Using the Jackson kernel (3.29), a δ-peak at Ẽ = (E− b)/a (position within the interval
[−1, 1] corresponding to the rescaled spectrum) is well approximated by a Gaussian of
width (half width at half maximum, HWHM) [WWAF06, SF09]

η̃ =

√
M − Ẽ2(M − 1)

2(M + 1)
(1− cos(2φ)) ≈ π

M

√
1− Ẽ2 +

4Ẽ2 − 3

M
, (3.30)

with φ = π/(M + 1). Note that for Ẽ = 0 (also the band center of our models) we have

η̃ ≈ π

M
, (3.31)

so most of the finite-size scaling (FSS) analysis in the coming chapters is not affected by
the exact form of (3.30). If one is interested in spectral positions away from Ẽ = 0, like
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Figure 3.5.: Demonstration of the dependence of of the energy broadening η̃ on the spec-
tral position Ẽ. Shown is the KPM approximation of a series of δ-functions,
which are broadened according to (3.30) (left). Using the VMKPM ap-
proach, the broadening is kept constant throughout the spectrum (right).
The dash-dotted curve is proportional to 1/η̃(Ẽ,M). From [SF09].

it is the case with the calculation of complete phase diagrams (see section 4.4), one must
be aware that η̃ may be decreased by up to a factor of about 5 close to the boundaries
of the rescaled spectrum, depending on the truncation limit M (see figure 3.5). For
some applications, this increase of energy resolution (∼ 1/η̃) provided by the KPM may
be appreciated, but for our FSS analysis (see chapt. 4), a precise control of the energy
broadening η is essential, which is related to the rescaled broadening η̃ by the same
rescaling relations (3.7) as for the energy E,

η = aη̃ . (3.32)

Schubert and Fehske suggested a procedure known as the variable-moment kernel
polynomial method (VMKPM) to avoid the Ẽ-dependence of η̃ by using a smaller number
of Chebychev moments µm for energies away from Ẽ = 0 [SF09], in correspondence to
(3.30). In other words, the truncation limit M becomes a function of the position within
the rescaled spectral position, M(Ẽ). In this way, η̃ is kept constant throughout the
spectrum.

In this work, the spectral dependence of η̃ is ignored. To partly compensate for
this, the spectrum boundaries are overestimated by a considerable amount, so that the
rescaled spectrum occupies only a small part in the center of the interval [−1, 1]. To be
specific, we use a fixed energy range of E/t ∈ [−24, 24] in our calculations (a = 24t). The
energy spectra of our Hamiltonians usually do not cover more than half of this energy
range, so that the variation of η̃ towards the band edges due to (3.30) is never greater
than about 10 % compared to its value at the band center.

3.3. Ensemble averages

If the model of interest is not describing a strictly periodic lattice, i.e. if it considers
some kind of randomness, the significance of using periodic boundary conditions (PBC)
(2.5) lies in the fact that the same configuration of random features is repeated in the
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3.3. Ensemble averages

neighboring supercells. By dividing the crystal into small copies of the supercell, a new
periodic symmetry is superimposed to the lattice that does not exist in the real material.
To compensate for this lack of randomness that would exist in the thermodynamic limit,
N → ∞, the quantity of interest must be ensemble-averaged over a sufficient number
NS of disorder configurations. For large NS, the same values of observables that would
have been measured in the macroscopic material (where the number of lattice sites is
quasi-infinite, N →∞) are then approached in the limit of large sample counts NS →∞.

3.3.1. The arithmetic average of the local density of states

In the absense of disorder, the LDOS is the same at every lattice site of a tight-binding
model, and equals the DOS due to the perfect translational symmetry of the lattice.
Introducing some form of disorder, this symmetry is broken, and the LDOS at different
lattice sites will differ from each other. The DOS can still be approached by obtaining
the ensemble average of the LDOS, which is the same as the arithmetic average of the
LDOS (ALDOS) over different disorder configurations s,

ρav(E) = 〈ρi(E)〉conf. = lim
S→∞

1

S

S∑
s=1

ρ
(s)
i (E) . (3.33)

If the correlation of the LDOS between different lattice sites can be neglected, the
sample count NS can be enhanced by considering different lattice sites of the same
disorder configuration. The sample count is then the product of the number of disorder
configurations S and the number of lattice sites R, NS = SR.

To be able to estimate the uncertainty of our data, we calculate the sample variance,

σ2
ρ(E) =

1

NS − 1

NS∑
i=1

(ρi(E)− ρav(E))2 . (3.34)

As a measure of how good the sample average (3.33) estimates the true average (the
population mean), the (sample) standard error (SSE) is considered,

sρ(E) =

√
σ2
ρ

NS
. (3.35)

3.3.2. The geometric average of the local density of states

For our analysis it is neccessary to distinguish energy regions of localized states from
those of extended states. However, the average density of states (3.33) is not sensitive
to the localization character of the electronic eigentstates. Instead, the typical density
of states can be used, which is the geometric average of the LDOS (GLDOS),

ρtyp(E) = exp〈log ρi(E)〉conf. = lim
S→∞

exp
1

S

S∑
i=1

log ρi(E) . (3.36)
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Figure 3.6.: Dependence of the ALDOS and the GLDOS on the truncation limit M
and on the system size L, for the 3D Anderson model (2.12) with disorder
strength w = W/t.

Figure 3.6 shows that it is reduced by both increasing disorder and increasing system size
within the whole energy spectrum [JCK12]. In the thermodynamic limit, the GLDOS
vanishes in energy regions of localized states, and takes a positive value in energy regions
of extended states [SF09]. For finite system sizes however, to which our numerical
analysis is limited, the GLDOS will stay positive, even in the case of perfectly localized
states.

As a first approximation, one can distinguish energy regions of extended and localized
states by defining a cutoff ρc

typ, like it was done by Schubert and Fehske [SF09], but
then the cutoff has to be either chosen arbitrarily, or adjusted to external calibration
parameters. This external knowledge could consist of the critical value of one of the
disorder parameters of the model, or of the position of one of the mobility edges. Con-
sidering a completely new model Hamiltonian that has not been studied before, or being
interested in verifying critical values of the model parameters, it is obviously not possible
to consider this approach. Because of this, we chose to obtain the GLDOS for different
system sizes N = Ld and conduct a FSS analysis, as described in chapter 4.

Again, the sample variance and the standard error are calculated, to assess the numer-
ical error of our findings. The sample variance of the geometric mean can be estimated
as (see appendix A) [Nor40]

σ2
ρtyp

(E) ≈ exp

 2

NS

NS∑
i=1

log ρi(E)

σ2
log ρi(E) , (3.37)

and for the SSE follows

sρtyp(E) =

√
σ2
ρtyp

NS − 1
. (3.38)

3.3.3. Online algorithms

Our numerical methods are limited to lattices of finite dimensions, as they are based on
effective tight binding supercells (see section 2.1). We confine ourselves to cubic lattices
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3.3. Ensemble averages

with N = Ld sites throughout this work, and measure L in units of the lattice constant
a ≡ 1, so that L is identical to the number of lattice sites in each dimension. On the other
hand, our physical interest lies in the properties of a specimen of macroscopic (quasi-
infinitely large) dimensions. To approximate its properties, it is popular in numerical
solid state theory to simulate a small snippet of the macroscopic crystal and let it
repeat periodically in all spatial dimensions. This is done by applying PBC (2.5) to the
small snippet, which allows the electronic wavefunctions ψ(r) to be both extended and
normalizable at the same time. The small snippet of the large crystal is what we refer
to as a supercell (cf. section 2.1).

The formulas (3.33), (3.34), (3.36) and (3.37) assume that the complete set of sample
values is already present at the moment of evaluation. However, we decided to use online
versions of these formulas, which add up values successively in a loop3. The average
value and variance can be obtained at any point during execution, or after exiting the
loop.

By looking carefully at formulas (3.33), (3.34), (3.36) and (3.37), it is apparent that
the only values that are neccessary to evaluate to obtain the arithmetic or geometric
average including their variance are the four sums,

A1 =

NS∑
i=1

ρi , (3.39)

A2 =

NS∑
i=1

ρ2
i , (3.40)

B1 =

NS∑
i=1

log ρi , (3.41)

B2 =

NS∑
i=1

(log ρi)
2 , (3.42)

plus the sample count NS
4. After these five quantities have been obtained successively

in a loop, the quantities of interest can easily be calculated,

ρ =
A1

NS
, (3.43)

σ2
ρ =

A2

NS − 1
− A2

1

NS(NS − 1)
, (3.44)

ρtyp = exp
B1

NS
, (3.45)

σ2
ρtyp

= exp
2B1

NS

(
B2

NS − 1
− B2

1

NS(NS − 1)

)
. (3.46)

3Source code at http://github.com/proggy/oalg/.
4We have left out the energy argument of the densities of states here to avoid clutter. It is clear that

all these formulas are valid at every energy independently.
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To initialize an averaging process with values from a previously stopped calculation,
the quantities A1, A2, B1 and B2 can be recovered by inverting equations (3.39) til
(3.42),

A1 = NS ρ , (3.47)

A2 = (NS − 1)σρ +
A2

1

NS
, (3.48)

B1 = NS log ρtyp , (3.49)

B2 = (NS − 1)σρtyp exp

(
−2B1

NS

)
+
B2

1

NS
. (3.50)

In this way, new random variates can simply be added to the sum, i.e. the summands
Nold

S + 1, . . . , Nnew
S .

Online algorithms possess several advantages:

• Memory usage is minimized, as there are only two floating point values (the sum
of values and the sum of squared values) and one integer value (the sample count)
that have to be stored. This is especially important when either the sample count
is very large, or when many averages have to be computed at the same time (e.g.,
at different energies of a spectral quantity).

• The averaging process may be stopped at any time, e.g. when the user presses a
certain key, a system interrupt occurs, a signal to terminate (e.g. the unix TERM
signal) is sent to the process (by either the user or by the administrator), or certain
abort criterions are met, like reaching a predefined relative accuracy, a certain date,
or an execution time limit.

• The averaging process may be continued at any time, by initializing the process
with a previously obtained set of values (average, variance and sample count), for
example if a higher accuracy is desired, or to continue after an unwanted system
interrupt etc. No data and hence no computation time is wasted.

• Various monitoring features are possible. A measure for the current data accuracy
and the current sample count can be monitored in real time. In a future application,
a dynamical plot could be shown where the current result (e.g. the density of states)
could be monitored, which is updated in real time.

• If the random variates (the LDOS in our case) are calculated first and stored on
the hard disc, the additional performance loss due to the disc access times (reading
and writing) must be considered5.

One disadvantage of online algorithms consists in the fact that the random data itself
are not preserved. The latter might be of interest for later analysis, for example if an

5Note that the performance of many computer clusters is often limited just by the network traffic that
the processes are causing.
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Figure 3.7.: ADOS (continuous line) and GLDOS (dotted line) of the Anderson model
for L = 50 and W/t ∈ {3, 9, 16}. For the ADOS, R = 10 start vectors and
S = 240 disorder realizations have been used. For the GLDOS, the numbers
are R = 32 and S = 200.

analysis of the underlying probability distribution is of interest6, or possibly for better
methods to estimate the statistical error. This depends on the given problem and should
be considered carefully before beginning any large scale computations.

3.4. Test results and performance

To validate our implementation of the KPM (section 3.2) as well as of the averaging al-
gorithms (section 3.3), we consider the test case shown in [WWAF06]: For the Anderson
model with a fixed system size N = L3 = 503 and disorder parameters W/t ∈ {3, 9, 16},
we obtain the GLDOS and ADOS shown in figure 3.7 which are very similar to those
shown in [WWAF06]. From this observation we conclude that other computations ob-
tained with our implementation can be trusted as well.

The overall performance has been tested in a realistic test calculation for the 3D
Anderson model with disorder strength W/t = 10. This includes the online algorithms
for the GLDOS and the ALDOS (which are executed side by side within the same loop),
the creation of a new matrix for each disorder configuration, and the KPM algorithm to
obtain the LDOS that is fed to both averaging algorithms in each loop. The system sizes
are varied in the range L ∈ {10, 15, . . . , 55}. For this test calculation, the local densities
of 1 % of the lattice sites are taken into account before a new disorder configuration

6 Although it is possible to formulate online algorithms for histograms just as well.
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Table 3.1.: Performance data for a realistic test calculation of 3D Anderson systems.
The overall execution time T is measured for different system sizes N = L3.
T is averaged over NC independent calculations, resulting in the standard
error sT .

L T [s] sT [s] NC

10 0.661 0.077 10
15 5.18 0.070 10
20 21.7 3.84 10
25 91.0 16.2 10
30 352 41.8 10
35 1224 23.4 10
40 3290 101 10
45 8326 289 10
50 21295 1112 10
55 48106 776 10

is created and its matrix is constructed. The total sample count is fixed to 2000 for
each system size, which means that the larger the system size L, the fewer times a new
disorder configuration has to be considered. The results of the timings are presented
in table 3.1. To increase accuracy, the timings have been averaged over 10 independent
calculations for each system size.

In figure 3.8, the data from table 3.1 is plotted. A fit using the model function

T (N) = ANP (3.51)

yields an exponent of P = 2.86. At least a quadratic behavior is expected, as the KPM
itself should be approximately linear in N , but at the same time the truncation limit M
is increased linearly with N in our calculations, which is neccessary for our FSS analysis
(see chapter 4). The double-log plot in figure 3.8 reveals that indeed the exponent P
appears to be approximately 2 for small system sizes, and is then further increased for
large system sizes.

To save some numerical effort, we also take into account the LDOS at different lattice
sites of every disorder configuration. This is justified because the correlation of the
LDOS values between random sites in a big sample should be small. For the present
work, we average over the LDOS of 10 % of the lattice sites of one disorder configuration,
so for a system size of N = L3 = 1000, we consider the LDOS of R = 100 random sites.
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Figure 3.8.: Overall performance of our algorithms when calculating the geometrically
and the arithmetically averaged density of states, both in the same loop.
For every system size L ∈ {10, 15, . . . , 55}, the local densities of 1% of the
lattice sites were taken into account. The truncation limit has been set
to M(L) = L3/20. To minimize the error, each execution time T is the
average of 10 independent measurements. The errorbars correspond to 95 %
confidence intervals. The inset shows a double-log plot of the same data.
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4. Finite size scaling of the typical density
of states

This chapter tries to answer the question of how the typical density of states ρtyp(E), i.e.
the geometric average of the local density of states (GLDOS), can be used to determine
the critical point of a metal-insulator transition (MIT) forming in a disordered electronic
system using a finite size scaling (FSS) analysis. The expected scaling of ρtyp(E) with
system size L is thus explored. In essence, we try to motivate a scaling ansatz used by
Asada et al. [ASO06] for fitting GLDOS data of a 2D disordered model with symplectic
symmetry [ASO04]. The scaling ansatz is then applied to our model of interest in
chapter 5.

4.1. Scaling behavior of the wave function intensity

The wave function intensity (WFI)
∣∣ψk(r)

∣∣2 is known to scale differently with system size
L, depending on the localization character of the corresponding states at a particular
energy E. Three cases must be distinguished:

1. On the insulating side of the critical point, all states are localized. For a perfectly
localized state, the WFI being a δ-function at a certain point r, the WFI is∣∣ψk(r)

∣∣2 = 1 (4.1)

in the thermodynamic limit. For a general localized state, the envelope of the wave
function ψk(r) is decaying exponentially in space with a finite decay length (2.25),
the localization length ξloc. The WFI scales like1∣∣ψk(r)

∣∣2 ∼ ξ−αloc . (4.2)

The localization length diverges like

ξloc ∼|ε|−ν (4.3)

at the critical point, with the localization length exponent ν. The critical regime
is entered as soon as ξloc exceeds the system dimensions, ξloc > L.

ε is some dimensionless measure of the distance to the critical point in the energy-
disorder space. In terms of the mobility edge EM (at fixed disorder W ), it may be
replaced by the reduced energy,

ε =
EM − E
EM

. (4.4)

1 For the meaning of α, see section 2.5.
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In terms of the critical disorder strength Wc (at fixed energy E), it may be replaced
by the reduced disorder,

ε =
Wc −W
Wc

. (4.5)

2. On the metallic side of the critical point, all states are extended. For a maximally
extended state (like a plane wave), the WFI scales like∣∣ψk(r)

∣∣2 ∼ L−d . (4.6)

Introducing some form of disorder, the states are still extended on the metallic
side of the critical point, but there is a correlation length ξcorr, so that the WFI
scales like ∣∣ψk(r)

∣∣2 ∼ L−dξd−αcorr . (4.7)

The correlation length diverges like

ξcorr ∼|ε|−ν (4.8)

at the critical point. In case of the Anderson metal-insulator transition (AMIT),
both the correlation length ξcorr and the localization length ξloc (4.3) scale with
the same exponent ν. Both diverge at the critical point. Coming from the metallic
side of the transition, the critical regime is entered as soon as ξcorr exceeds the
system dimensions, ξcorr > L.

3. In the critical regime, the states are multifractal. When ξloc and ξcorr are replaced
by L in equations (4.2) and (4.7), the critical regime is entered and the WFI scales
like [KMV09] ∣∣ψk(r)

∣∣2 ∼ L−α , (4.9)

with a broad distribution of exponents α at different positions r [KMV09],

P (α) = L
− (α−α0)2

4(α0−d) . (4.10)

The typical (most probable) value of the WFI scales like [KMV09]∣∣ψk(r)
∣∣2 ∼ L−α0 . (4.11)

The multifractality is also visible in the moments of the WFI. The qth moment of
the WFI scales like [EM08] 〈∣∣ψk(r)

∣∣2q〉 ∼ L−d−τq , (4.12)

as can be seen from (2.33) and (2.34), with τq being the mass exponents. The angle
brackets 〈 . . . 〉 denote the ensemble average over different disorder configurations.
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Under the assumption that ∆q ≈ −γq(q − 1) with γ � 1 (parabolic singularity
spectrum) (2.41), it can be deduced that〈∣∣ψk(r)

∣∣2q〉 ∼ L−d−Dq(q−1) ≈ L−dq+(α0−d)q(q−1) (4.13)

and [KMVS12]

Dq ≈ d− q(α0 − d) . (4.14)

In the following, we simply write ξ as a replacement for both ξloc and ξcorr, depending
on which side of the Anderson transition is considered (insulating or metallic phase).

4.2. Asymptotic behavior of the typical density of states

In this section, we write the LDOS (3.1) in the continuous space form,

ρ(E, r) =
∑
k

∣∣ψk(r)
∣∣2 δ(E − Ek) , (4.15)

where r is a point in d-dimensional space. For the δ-function we consider a Lorentzian2

with finite broadening η [ASO06],

δ(E − Ek, η) =
1

π

η

(E − Ek)2 + η2
. (4.16)

The GLDOS generally depends on two scales:

• The length scale L/ξ, set by the extent of the localization/correlation length in
relation to the system size L. For L/ξ < 1, the critical regime is entered, while for
L/ξ > 1, the system is either in the metallic or in the insulating regime.

• The energy scale η/∆, measuring the energy resolution η in relation to the level
spacing ∆,

∆(E) =
1

ρav(E)Ld
. (4.17)

ρav(E) is the total density of states (DOS), i.e. the arithmetic average of the LDOS
(ALDOS) (4.15) in the thermodynamic limit.

4.2.1. The high-resolution limit

We first consider the limit η/∆ → 0, i.e. the limit of high energy resolution, and the
critical region, L/ξ → 0. The energy resolution is inversely proportional to the energy
broadening η. In the limit η/∆→ 0, the eigenenergies can be viewed as sharp peaks in
the LDOS (4.15), compared to the distance ∆ between two of the peaks (see figure 4.1).

2Within the KPM using the Jackson kernel, a δ-peak is actually best approximated by a Gaussian (see
section 3.2.5) [WWAF06], but a Lorentzian is easier to handle analytically.
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Ek Ek+1
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Figure 4.1.: Sketch of the situation in the limit η/∆→ 0.

If we probe a specific energy E, the probability to hit an eigenstate Ek within the
interval [Ek− η,Ek + η] is 2η/∆. We make the assumption that as soon as E lies within
a radius η around an eigenenergy Ek, the broadened δ-function (4.16) can be replaced
by its maximum value,

δ(0, η) =
1

πη
. (4.18)

If E lies outside the radius η (between two eigenstates), we assume the value of the
broadened δ-function at a distance of ∆/2 from the eigenstate (i.e., half-way to the next
eigenstate),

δ(∆/2, η) =
1

π

4η

∆2 + 4η2
≈ 4η

π∆2
. (4.19)

The last term is an approximation that should be valid in the limit η � ∆.

The geometric average of the LDOS (GLDOS) is given by

ρtyp(E, r) = exp〈log ρ(E, r)〉 , (4.20)

i.e. it includes the ensemble average over the LDOS ρ(E, r). Following the above as-
sumptions, we can evaluate the ensemble average and get

log ρtyp(E, r) ∼ 2η

∆
log

(
L−α0

1

πη

)
+

(
1− 2η

∆

)
log

(
L−α0

4η

π∆2

)
. (4.21)

Here, we assume that on average, the WFI
∣∣ψk(r)

∣∣2 scales like L−α0 (4.11), which is
reasonable because we consider the ensemble average over many LDOS. Equation (4.21)
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can be further simplified,

ρtyp(E, r) ∼ exp

(
2η

∆
log

(
L−α0

1

πη

))
exp

((
1− 2η

∆

)
log

(
L−α0

4η

π∆2

))
(4.22)

=

(
L−α0

1

πη

) 2η
∆
(
L−α0

4η

π∆2

)1− 2η
∆

(4.23)

= L−α0
1

π
η1− 4η

∆ ∆−2+ 4η
∆ (4.24)

≈ L−α0
η

π

1

∆2
(4.25)

=
1

π
L2d−α0ηρ2

av(E) . (4.26)

The last two lines should again be a valid approximation in the limit η/∆→ 0.

4.2.2. Medium energy resolution

Before considering the low-resolution limit, η/∆ → ∞, we must turn our attention to
the case of “medium” energy resolution. By this we mean the case where 4η/∆ & 1,
so that the quantity 2η/∆ can be seen as the approximate number of states contained
within the interval [Ek−2η,Ek+2η] around an eigenstate Ek. Those states are the only
ones that contribute considerably to the value of the LDOS (4.15). On the other hand,
we still want η/∆ to be small enough so that a Lorentzian of width η at the critical
point is only covering critical states. The case where the Lorentzian is exceeding than
the critical region – so that localized and extended states mix in – will be covered in the
next section. We still consider the critical point, i.e. L/ξ → 0.

As soon as 4η/∆ & 1, the probing energy E can never lie “between two Lorentzians”,
due to the strong overlap between adjacent Lorentzians. So the GLDOS should scale
like

ρtyp(E, r) ∼ exp

〈
log

(
2η

∆
L−α0

1

πη

)〉
(4.27)

=
2η

∆
L−α0

1

πη
(4.28)

=
2

π
Ld−α0ρav(E) . (4.29)

So, the GLDOS is approximately decreasing like L−1, as d = 3 and α0 ≈ 4 [RVSR11].

4.2.3. The low-resolution limit

In the low resolution limit, the width η of a broadened eigenenergy peak within the LDOS
becomes infinitely large. At a certain value ηc, it covers the whole critical region. Beyond
this value, it even covers localized and extended states that lie outside the critical region.
So the value of the LDOS assumed in section 4.2.1 for a critical state is not sufficient
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4. Finite size scaling of the typical density of states
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Figure 4.2.: The situation for large η/∆. If the width of the Lorentzian centered at the
mobility edge EM is larger than the width C of the critical region, it also
captures localized and extended states below and above the critical region.

anymore. In fact, because the sum is to take over all states k in the definition of the
LDOS (4.15), it is tedious to estimate its value in the low resolution limit in this way3.
In the following, we try to estimate the critical width ηc for which non-critical states
start to mix into the value of the LDOS at the mobility edge EM. Figure 4.2 illustrates
the situation in form of an energy level diagram.

To estimate the critical energy broadening ηc, we first note that the number Nc of
critical states (number of states within the critical region) is given by

Nc =
C

∆
, (4.30)

where we assumed that ∆ does not change much within the critical region around EM.
C is the width of the critical region which is assumed to extend symmetrically around
the mobility edge EM (see figure 4.2). Directly at the boundary of the critical region,
we know that ξ = L. As ξ diverges at the mobility edge (4.3), we can conclude that∣∣∣∣C2

∣∣∣∣−ν ∼ L ,

C ∼ 2L−
1
ν ,

Nc =
C

∆
∼ 2Ld−

1
ν . (4.31)

In our calculations (chapter 5), we keep the product ηLd fixed (we use η̃Ld = 20π).
To know if η is already large enough to cover also localized and extended states, which
would then contribute to the value of the LDOS, we have to compare our value ηLd

with the theoretical value ηcL
d. To be able to provide an absolute number would require

knowledge about the absolute localization length in equation 4.3.

3One can however argue that by taking the sum over all energies, the classical result is approached,
which suggests a scaling like ΓLα0−d ∼ Lα0−d.
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4.3. Scaling ansatz for the typical density of states

As ν ≈ 1.6 [RVSR11], we know that4

ηcL
d ∼ 2L2.4 . (4.32)

In general, it is advisable to not go far beyond the value 4η/∆ & 1, because then, the
assumptions of the medium resolution regime (section 4.2.2) can still be used. For our
calculations, we fix L3/M = 20, so

4η

∆
=

4 · 24tη̃

∆
= 4 · 24tπρav

Ld

M
≈ 4 · 24π ≈ 300 (4.33)

For this estimate, we use equation (3.31) by considering a Chebychev expansion (3.3)
with M moments at E = 0, and for the value of the DOS near the critical disorder we
assume ρav(0) · t ≈ 0.05 (see figure 2.3). η is related to the rescaled η̃ via (3.32). As
(4.33) shows, our calculated data lies far beyond 4η/∆ = 1, and we therefore cannot
exclude the possibility that we are already mixing in localized and extended states from
outside the critical region. We recommend that future calculations should consider a
lower value of 4η/∆, by at least one order of magnitude. On the other hand, it must be
kept in mind that the numerical effort would be increased by the same factor.

4.3. Scaling ansatz for the typical density of states

As already stated in section 4.2, the GLDOS should only depend on the length scale
L/ξ and on the energy scale η/∆. Further, it is known that at the critical point, the
GLDOS scales like [Jan98]

ρtyp ∼ Ld−α0 . (4.34)

Based on this, we consider a scaling ansatz for the GLDOS also used by Asada et al.
[ASO06], who successfully applied it to the two-dimensional SU(2) model [ASO04,
ASO05] which also exhibits an AMIT5. The scaling ansatz reads

Γ = Ld−α0F (L/ξ, η/∆) , (4.35)

which is equivalent to

Γ = Ld−α0F̄ (εL
1
ν , ρavηL

d) . (4.36)

Γ(E) is the ratio of typical and average density of states,

Γ(E) =
ρtyp(E)

ρav(E)
. (4.37)

ε can be the reduced energy (4.4) or the reduced disorder (4.5). F (x, y) is in general an
unknown function, but we can at least assume continuity. To substantiate the scaling
ansatz (4.36), we are going to confirm its validity numerically for the case of the three-
dimensional Anderson model (2.12) at half filling in the coming sections.

4 L is measured in units of the lattice spacing a, i.e. it corresponds to the number of lattice sites in one
dimension.

5 This is possible in 2D for systems belonging to the symplectic symmetry class (see section 2.4).
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4. Finite size scaling of the typical density of states

Table 4.1.: Fit results for the scaling ansatz (4.39) considering the Anderson model at
E = 0 and for 15 ≤ W/t ≤ 18.5 and 10 ≤ L ≤ 50. The GLDOS is averaged
over NS = 160000 LDOS spectra, while for the ADOS, R = 10 random-phase
vectors are used and it has been averaged over S = 2500 disorder realizations.
The fit parameters are given together with the standard deviation estimated
by the fit algorithm. To assess the quality of the fit, the reduced χ2 statistic
is given.

F0 F1 F2 Wc/t α0 ν

0.06± 0.01 0.95± 0.07 5.12± 0.14 16.19± 0.10 4.01± 0.01 1.17± 0.03

χ2
red = 5.07

4.3.1. Verification of the scaling ansatz: The first argument

We consider the Anderson model (2.12) in the following, using a box distribution (2.11) of
width W for the random site potentials. To verify the dependence of the scaling ansatz
(4.36) on its first argument x = εL

1
ν , it seems natural to keep the second argument

y = ρavηL
d fixed to a constant value. However, to be able to calculate the GLDOS and

the ALDOS at the same time, we decide to only keep the product ηLd fixed. To be
more specific, we fix Ld/M = 20, using M Chebychev moments within the KPM (see
section 3.2). So ηLd = 24tη̃Ld = 24tπLd/M = 24tπ · 20 ≈ 1500t. For a future work, the
ADOS should be calculated in advance using the efficient KPM algorithm for the DOS
(see section 3.2.4), and then the truncation limit M should be adjusted when calculating
the GLDOS so that the whole argument y = ρavηL

d is kept constant.
The ALDOS ρav(E), which is approaching the value of the total DOS in the thermo-

dynamic limit, depends not only on the energy E, but also on the disorder strength W .
Within the considered range of disorder values, W/t ∈ {15 . . . 18.5}, the value of ρav(0)
is changed by about 20 % (see figure 4.3). Still, we neglect the disorder dependence for
now6, and are then left only with the first argument of the function F (x, y) ≡ F̃ (x). We
expand F̃ (x) in a power series to second order in x [ASO06],

F̃ = F0 + F1x+ F2x
2 . (4.38)

Fitting our data for ρtyp(0) and ρav(0) at E = 0 for different system sizes L ∈ {10, . . . , 50}
and different disorder values W/t ∈ {15, . . . 18.5}, we can apply a least-squares (χ2)
fitting procedure to the function

Γ(W,L) = Lα0−dF̃ (εL
1
ν ) (4.39)

with the six fitting parameters (F0, F1, F2,Wc, α0, ν) and d = 3. The fitting results are
summarized in table 4.1.

Figure 4.4 shows a plot of the data, rescaled to ΓLα0−d versus εL
1
ν or |ε|L

1
ν , re-

spectively, using the fit parameters shown in table 4.1. As predicted by the scaling

6 The results appear to be only mildly influenced if we consider the disorder-dependence of ρav(E) to
linear order in the fit.
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Figure 4.3.: Disorder-dependence of the ADOS at E = 0 within the considered range of
disorder values W/t around the expected critical disorder Wc/t ≈ 16.5. The
system size is L = 50, and the truncation limit is M = L3/20 = 6250.

ansatz (4.36), the data indeed falls onto one curve. So, the general applicability of
equation (4.36) with respect to the first argument of F (x, y) is verified for the 3D An-
derson model at half filling. Also, the second-order expansion for F̃ (x) (4.38) seems to
be sufficient. However, the precision of some data points could be further improved.

4.3.2. Verification of the scaling ansatz: The second argument

We now consider the case where we are directly at the critical point, so ξ is diverging,
ξ → ∞, and hence the first argument in equation (4.36) is identical to zero. Only the
second argument remains, F (x, y) ≡ f̃(y), and equation (4.36) becomes

Γ(L,M) = Ld−α0 f̃(ρavηL
d) . (4.40)

Calculating data for the 3D Anderson model (2.12) at E = 0 and W/t = 16.5, which
should be close to the critical point [RVSR11], results in figure 4.5. Note that ρav = const
for E = const and W = const, and η ≈ π/M at E = 0 (3.31). Evidently, the data points
form a continuous function of Ld/M or, alternatively, ηLd. We thereby conclude that the
scaling ansatz (4.36) is also valid for scaling with its second argument, and can confirm
its applicability to the 3D Anderson model at criticality and half filling.

Furthermore, by plotting the data in a double-logarithmic form in figure 4.5, it becomes
evident that the unknown function f(log y),

log(ΓLα0−d) = f(log(ρavηL
d)) , (4.41)
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Figure 4.4.: Demonstration of the scaling ansatz (4.36) with respect to the first argument
of the function F (x, y), applying it to the Anderson model at E = 0 for 15 ≤
W/t ≤ 18.5 and 10 ≤ L ≤ 50. The GLDOS is averaged over NS = 160000
LDOS spectra, while for the ADOS, R = 10 random-phase vectors and
S = 2500 disorder realizations are used.
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Figure 4.5.: Demonstration of the scaling ansatz (4.36) with respect to the second argu-
ment of the function F (x, y).
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4.3. Scaling ansatz for the typical density of states

has two slant asymptotes with the slopes ΘL for Ld/M � 1 and ΘR for Ld/M � 1.
This suggests a fit model describing a smooth transition between two intersecting straight
lines [BW71],

f(ỹ) = a0 + a1(ỹ − ỹ0) + a2(ỹ − ỹ0)T (ỹ − ỹ0) , (4.42)

where a1 is the average slope,

a1 =
ΘL + ΘR

2
, (4.43)

and a2 is half the difference between the slopes ΘL and ΘR,

a2 =
ΘL −ΘR

2
, (4.44)

T (ỹ) is the transition function. If the sign function is used, T (ỹ) = sgn(ỹ), with

sgn(ỹ) =


1 , ỹ > 0

0 , ỹ = 0

−1 , ỹ < 0

, (4.45)

a sharp transition at ỹ0 between the two straight lines is obtained. To smoothen the
transition, smoothed estimates of the sign function (4.45) have to be found. There are
several good choices for such a function [BW71]. We favorize the hyperbolic tangent
tanh(κx), as it approaches ±1 for x → ±∞. The parameter κ is a measure for the
“smoothness” of the transition and has to be fitted to the data. In figure 4.6, our
choice for the transition function T (ỹ) is compared to the sign function (4.45) and to a
Lorentzian of the form mκ/(ỹ2 + κ2) with an additional parameter m.

The total fit model reads

Γ(L,M) = Ld−α0 exp f̃(log
Ld

M
) . (4.46)

The complete set of fit parameters is (a0, a1, a2, α0, κ, ỹ0), and d = 3 is a constant. The
fit results are summarized in table 4.2. From the fit parameters, the slopes of the two
slant asymptotes can easily be calculated,

ΘL = a1 + a2 , ΘR = a1 − a2 . (4.47)

In this way, we obtain the slopes ΘL = 2.74 ± 0.11 and ΘR = 0.54 ± 0.11. The value
α0 = 4.23±0.02 agrees quite well with the established numerical value 4.048(4.045, 4.050)
[RVSR11], as well as with the analytic prediction (2.44).

At this point, a comparison of the slopes with the analytical predictions from sec-
tions 4.2.1 and 4.2.2 seems appropriate. Rearranging (4.26) yields

ΓLα0−d ∼ ρavηL
d , (4.48)

so according to this estimate, in a double-logarithmic plot, the left slope should be
ΘL = 1. Unfortunately, we find a much higher slope of ΘL = 2.74± 0.11. At least, our
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Figure 4.6.: Comparison between different choices for the transition function T (ỹ). The
signum function sgn(ỹ) corresponds to the non-smoothed limit of the transi-
tion functions. The shown Lorentzian has the parameters κ = 2 and m = 5,
and the hyperbolic tangent has κ = 1.

Table 4.2.: Fit results of the fit model (4.46).

a0 a1 a2 α0 κ ỹ0

−0.88± 0.14 1.64± 0.06 1.10± 0.05 4.23± 0.02 −2.12± 0.14 −2.69± 0.09

χ2
red = 87.5
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4.4. Empirical scaling ansatz

analytic estimation is able to explain the slope in the findings of Asada et al. for a 2D
system with symplectic symmetry [ASO06], where they indeed find a slope close to 1.

For medium resolution, equation (4.29) seems to suggest a constant,

ΓLα0−d ∼ 2

π
. (4.49)

Anyway, we obtain a steadily increasing function in the double-logarithmic plot, as well
as Asada et al. does [ASO06]. For the low resolution limit (section 4.2.3) we approach
the classical result ΓLα0−d ∼ Lα0−d, so the slope in the double-logarithmic plot ΓLα0−d

vs. ηLd should be (α0 − d)/d. This seems to be realized quite well in our case of the
3D Anderson model, as well as in the 2D symplectic case investigated by Asada et al.
[ASO06].

4.4. Empirical scaling ansatz

If the value of the second argument y = ρavηL
d is kept constant and we consider a

position in phase space directly at the critical point, i.e. ε = 0, then both arguments of
the unknown function F (x, y) are constant. Hence, also the function value of F (x, y) is
a constant, F (x, y) = F0. The only remaining part in the scaling ansatz (4.36) then is
[Jan98]

Γ(L) = Ld−α0F0 . (4.50)

So at least directly at the critical point, the scaling of Γ (or ρtyp) with system size L
is known to have this simple form. However, away from the critical point (ε 6= 0), the
scaling with L is generally unknown, and may be non-trivial, as it enters both function
arguments of F (x, y). Also, in the metallic regime, the GLDOS is expected to approach
a non-zero value in the thermodynamic limit L→∞, which the simplistic scaling ansatz
(4.50) does not allow for.

Nevertheless, we try to use the empirical scaling ansatz [JCK12]

ρtyp(L) = F0L
−p (4.51)

for fixed W and fixed E to estimate the phase transition in the whole energy-disorder
plane, i.e. to obtain the whole phase diagram of disorder [JCK12]. According to (4.50),
directly at the critical point, it should be fulfilled for p = α0 − d. So by obtaining data
for different system sizes L, one should be able to identify the mobility edges EM for
every fixed W using the cutoff

pc = α0 − d . (4.52)

However, because of the non-trivial scaling form away from the critical point, there is
no guarantee that the same exponent p = α0 − d is not found again at energies away
from the mobilitiy edge EM, which could lead to ambiguities in the determination of the
phase trajectory in certain parts of the phase diagram. Another caveat is that we only
keep the product ηLd = const in our calculations, whereas we neglect the dependence
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4. Finite size scaling of the typical density of states

of ρav(E) on disorder and energy. At least the latter is of course not justifiable, as the
DOS even drops to zero towards the band edges (see figure 2.3).

Accepting the above restrictions, the whole phase diagram of disorder can easily be
obtained when the two-dimensional function p(E,W ) is evaluated for the full range of
energy and disorder values. Then, the phase trajectory is given by the contour

p(E,W ) = pc (4.53)

i.e. the contour emerging when cutting the two-dimensional function p(E,W ) with a
horizontal plane at p = pc.

This procedure has been applied to the Anderson model in figure 4.7. The 95 %
confidence region is depicted by the gray shaded area, which can be approximated by
the area between the two contours

p(E,W )± 1.96σp(E,W ) = pc , (4.54)

where σp(E,W ) is the estimated standard deviation of the parameter p provided by
the fit algorithm, at position (E,W ) in the phase diagram. Intriguingly, despite the
vigorous assumptions above, our result for the quantum phase diagram for the Anderson
model already reveals many expected properties when comparing it to established results
[BSK87, KM93, SF09] (cf. figure 2.6):

• For zero disorder, W = 0, the mobility edges EM coincide with the band edges.

• For increasing disorder, the band broadens, and localized states appear in the band
tails.

• The reentrance behavior is reproduced.

• The critical disorder at half filling (E = 0) is found roughly at Wc/t ≈ 16.5.

On the downside, the phase diagrams in the literature are not accurately reproduced.
Differences include:

• We do not quite find the expected value for the critical disorder in the band center
E = 0, which is known to be close to Wc/t ≈ 16.5 [BSK87, KM93]. A recent
investigation found Wc/t = 16.530(16.524, 16.536) with high precision [RVSR11].
We usually find values below, e.g. Wc/t ≈ 16.3, although the overall accuracy of
this method is not high enough to make a more accurate statement.

• The turning points of the phase trajectory at high absolute energy are some-
what different from previous calculations [BSK87, SF09], which appear around
E/t = [−8, 8] in our case. As the energy-dependence of the DOS ρav(E) is hardly
negligible, the results far away from the band center are expected to be highly
unreliable anyway.
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Figure 4.7.: Quantum phase diagram of the Anderson model (2.12) in the disorder-energy
plane as obtained by the empirical scaling ansatz (4.51) and the condition
(4.53). The shaded region depicts the 95 % confidence region according to
(4.54).

• There are some kind of plateaus forming near the high energy turning points,
which has also been found by Schubert and Fehske [SF09] using KPM but no
FSS analysis. These plateaus are not found in any other predictions for the phase
diagram of the Anderson model [BSK87, ETT+14].

The plateaus show the tendency to form small peaks, splitting the phase diagram
into three regions (six mobility edges) for certain values of W . This behavior
seems to disappear as soon as the accuracy of the data reaches a certain level. As
discussed above, there is no guarantee that the cutoff value pc is not crossed again
away from the critical point, which could cause this phenomenon.

In section 5.4, this approximative method to estimate the phase diagram based on the
empirical scaling ansatz (4.51) is applied to the Anderson-Heisenberg model (5.2).
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5. Effective model for the impurity band
electrons of phosphorus-doped silicon

To study the metal-insulator transition (MIT) in phosphorus-doped silicon (Si:P), which
is driven by both interaction and disorder, the Anderson-Hubbard model (2.50) can be
considered, as it possesses all the necessary ingredients: It describes interacting electrons
in a disordered potential, and the interaction may give rise to the formation of magnetic
moments if the parameters are chosen correctly. However, theoretical studies often
have to compromise between completeness of a model and numerical effort. Hence, we
choose a variant of the Anderson-Hubbard model that gets along with a single-particle
description. The model is described in the following section. Later in this chapter,
results for the model will be presented, which have been obtained using the numerical
methods and concepts introduced in the previous chapters.

5.1. The Anderson-Heisenberg model

The local magnetic moments in Si:P emerge from impurity states that are occupied by
only one electron in the groundstate. In some theoretical approaches, the local moment
formation is separated from the itinerant electrons in the impurity band by considering
localized spins (two-fluid model) [PGBS88, MSB89, Sac89]. We build on this idea by
replacing the Hubbard term in equation (2.50) by a term describing an exchange coupling
between the impurity band electrons and a finite concentration of classical magnetic
impurities. We further place the donor states on a regular grid (3D simple-cubic lattice),
while in real Si:P, the donor atoms are randomly distributed within the silicon host, as
illustrated in figure 5.1. Considering only hoppings to nearest neighbors, we assume a
situation in which the overlap is only considerably different from zero in the distance to
the nearest neighbors, and negligible for any larger distances.

In essence, the above assumptions come down to an extension of the Anderson model
[And58] (cf. section 2.2),

Ĥ0 = t
∑
〈i,j〉,σ

|j, σ〉 〈i, σ|+
∑
i,σ

εi |i, σ〉 〈i, σ| . (5.1)

Here, |i, σ〉 denotes an electron state with spin σ located at site i of a 3D cubic lat-
tice with N = L3 sites and periodic boundary conditions (we usually consider L ∈
{10, 20, 30, 40, 50}). For the local potentials εi, random values are drawn from a box
distribution (2.11) of width W , εi ∈ [−W/2,W/2], while the hopping amplitude t be-
tween neighboring lattice sites remains constant. Note that in the pure Anderson model
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5. Effective model for the impurity band electrons of phosphorus-doped silicon

(a) (b)

Figure 5.1.: Schematical plot of the hydrogen-like orbitals of phosphorus donors, (a)
positioned randomly in the silicon host, and (b) placed on the sites of a
lattice, as assumed by the Anderson-Heisenberg model.

(5.1), the spin index σ is redundant as the two spin channels are not connected by
off-diagonal (hopping) matrix elements. Hence, each energy eigenvalue will exist twice
(double degeneracy).

We add a second term Ĥs to the Hamiltonian

Ĥ = Ĥ0 + Ĥs , (5.2)

which describes a local coupling (at site i) of the electron spin σi to a classical magnetic
moment Si with constant norm S = 1, but random orientation (Heisenberg-like), given
by the (polar and azimuth) angles θi and ϕi. The angles are drawn uniformly from the
intervals cos θi ∈ [−1, 1] and ϕi ∈ [0, 2π]. Each σi is a vector containing the three Pauli
matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (5.3)

so the general form of the coupling term,

Ĥs =
∑
i

Jiσi · Si , (5.4)

can be written as

Ĥs = S
N∑
i=1

Ji

(
cos θi

∑
σ=±1

σ |i, σ〉 〈i, σ| + sin θi
∑
σ=±1

exp(iσϕi) |i, σ〉 〈i,−σ|

)
. (5.5)

For this work, we fix the concentration of dopant sites carrying a magnetic moment to
nM = 5 % and only vary the exchange coupling strength J . We note that nM = 5 % is a
realistic value for real materials like Si:P [Sac89, BR81, BL82, MSB89] (cf. section 2.6.5).
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5.2. Calculation of the spin-resolved local density of states

Ji is drawn from a binary probability distribution, Ji ∈ {J, 0}, taking a nonzero value
with probability nM, for which it conforms to the exchange coupling strength J .

By adding the term (5.5) to the Anderson model (5.1), the spin index σ is no longer
redundant. The matrix representation of (5.2) is a N × N grid of small 2 × 2 subma-
trices which represent the two spin states of each impurity band electron. In a matrix
representation for the spin, the coupling term (5.5) can be written in the alternative
form

ĤM
s = S

N∑
i=1

Ji

(
cos θi eiϕi sin θ

e−iϕi sin θ − cos θi

)
|i〉 〈i| . (5.6)

For comparison, we also study the effect of Ising impurities, substituting the uniform
distribution for cos θi by a uniform binary distribution, θi ∈ {0, π}. In this case, the com-
plex interaction terms in (5.5) vanish and the Hamiltonian still belongs to the orthogonal
symmetry class:

Ĥs = S

N∑
i=1

Ji cos θi
∑
σ=±1

σ |i, σ〉 〈i, σ| . (5.7)

Thus, the off-diagonal matrix elements in (5.6) vanish. The Ising impurities only in-
troduce an additional form of disorder, which is expected to lower the critical disorder
potential Wc, but not lead to a change of the symmetry class of the model.

5.2. Calculation of the spin-resolved local density of states

To determine the critical point for various combinations of the system parameters (nM,
J,W,L), the numerical methods from chapter 3 are applied to the Hamiltonian (5.2) for
both cases, Heisenberg and Ising impurities, independently. Now, the spin-resolved local
density of states (SLDOS),

ρi,σ(E) =

2N∑
k=1

∣∣〈i, σ|k〉∣∣2 δ(E − Ek) , (5.8)

has to be taken into account, i.e. there is an additional index σ for the spin of the impurity
band electrons that can take the two values +1 and −1 (spin-up and spin-down). The
full Hamiltonian (5.2) has 2N eigenstates, resulting in a 2N × 2N tight binding matrix.

Note that because of the additional spin index, the calculation of the SLDOS for the
Anderson model including Ising impurities doubles the numerical effort for fixed system
size L, compared to the pure Anderson model. Including Heisenberg impurities, there is
another factor of two in memory demand and computation time, as the matrix elements
are now complex, so that there is a total factor of four in the numerical effort compared
to the pure Anderson model.

5.3. Shift of the critical disorder due to the exchange coupling

Using the finite size scaling (FSS) approach described in chapter 4, the critical disorder
Wc is determined for different exchange coupling strengths J . For this analysis, we fix
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5. Effective model for the impurity band electrons of phosphorus-doped silicon

the energy to the band center, E = 0, which is also chosen as the center of the rescaled
energy interval used by the KPM, so that (3.31) is an excellent approximation for the
energy broadening η, and side effects caused by neglecting the energy-dependency of
η do not occur (cf. section 3.2.7). In the scaling form (4.36) [ASO06] we fix the ratio
Ld/M = 20. Neglecting the disorder-dependence of the ALDOS ρav(E), the function
F (x, y) then depends only on its first argument, x = εL1/ν . In general, ε can be any
dimensionless measure for the distance to the critical point within the disorder-energy
space (phase space), but here it is taken as the reduced disorder potential (4.5), while
the other three contemplable parameters E, J and nM are kept constant.

We expand the unknown function F (x) to second order in x using a power series
(4.38), so in total our fit model (4.36) contains one dependent variable Γ = ρtyp/ρav, two
independent variables W and L, and six fit parameters (Wc, α0, ν, F0, F1, F2), plus the
constant d = 3. For three different exchange coupling strengths J , the scaling ansatz
(4.36) is demonstrated in figure 5.2.

Table 5.1 summarizes the fit results for all considered values J . Figure 5.3 shows how
the fitted parameters Wc, α0 and ν depend on the coupling strength J . While for Ising
impurities Wc(J) decreases monotonically, in the case of Heisenberg impurities, Wc first
increases to a maximum of Wc/t = 19.79± 0.13 at J/t = 6, before it eventually follows
the Ising curve down to smaller values. This tendency is expected, as the symmetry class
is changing from orthogonal to unitary. Other studies considering an external magnetic
field (also in the unitary symmetry class) have found a value of Wc/t = 18.35 ± 0.11
[DBZK98]. We conclude that the additional spin symmetry breaking of the magnetic
impurities causes a further increment.

It should be noted that our result for Wc at J = 0 (i.e., the pure Anderson model), is
Wc/t = 16.20± 0.06, which is considerably smaller than established values like Wc/t =
16.530(16.524, 16.536) [RVSR11] or 16.536(16.531, 16.543) [SO14]. A possible reason is
the neglectance of irrelevant scaling variables [SO14] in our scaling ansatz (4.35), which
might be neccessary for our chosen system sizes L ∈ {10, 20, 30, 40, 50}. Noting that
the computational effort is already quite high for our present calculations (about three
months), it might however not be feasible to turn to larger system sizes.

To assess the quality for each fit, the reduced χ2
red statistic is given in table 5.1. The

values are all smaller than one, suggesting that the data has been overfitted by the
fit model (4.36), given the standard error (SSE) that was calculated as described in
appendix A.2. Alternatively, the SSE might have been overestimated for some unknown
reason.

As can be seen in figure 5.3, also the value of α0 appears to undergo a gradual transition
to another value (i.e., its unitary value) by tuning up the concentration of Heisenberg
impurities, whereas for Ising impurities, it stays fairly constant and is about compat-
ible with recent numerical studies for its orthogonal value, α0 = 4.048(4.045, 4.050)
[RVSR11].

Our results for the localization length exponent ν remain rather inconclusive. Overall,
at least for the orthogonal symmetry class, a much higher value ν = 1.590(1.579, 1.602)
[RVSR11] is expected. As already mentioned above, the unusual small values for Wc and
ν in case of the pure Anderson model (J = 0) could mean that our system sizes are not
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5.3. Shift of the critical disorder due to the exchange coupling

Table 5.1.: Resulting fit parameters Wc, α0 and ν for the different exchange coupling
strengths J , including their standard deviation estimated by the fit algorithm.
To assess the quality of the fit, the reduced χ2 statistic is given.

J/t Wc/t α0 ν χ2
red

0 16.20± 0.06 4.01± 0.01 1.14± 0.02 0.43

Heisenberg 0.1 16.73± 0.08 4.08± 0.01 1.14± 0.01 0.31
0.3 17.34± 0.10 4.13± 0.01 1.15± 0.02 0.53
0.5 17.64± 0.08 4.15± 0.01 1.15± 0.01 0.52
0.7 17.93± 0.10 4.18± 0.01 1.14± 0.01 0.65
0.9 17.96± 0.10 4.16± 0.01 1.15± 0.01 0.61
1 18.11± 0.10 4.18± 0.01 1.15± 0.01 0.56
2 18.80± 0.12 4.23± 0.02 1.16± 0.02 0.75
3 19.08± 0.12 4.24± 0.01 1.19± 0.02 0.60
4 19.69± 0.13 4.31± 0.02 1.19± 0.05 0.39
5 19.44± 0.09 4.29± 0.01 1.13± 0.01 0.64
6 19.79± 0.13 4.33± 0.02 1.15± 0.03 0.40
7 19.52± 0.12 4.31± 0.01 1.15± 0.02 0.70
8 19.58± 0.16 4.33± 0.02 1.19± 0.04 0.56
9 19.40± 0.19 4.35± 0.02 1.25± 0.05 0.61
10 18.08± 0.15 4.26± 0.02 1.19± 0.03 0.66

Ising 0.1 16.37± 0.07 4.03± 0.01 1.14± 0.01 0.31
0.3 16.30± 0.08 4.03± 0.01 1.12± 0.02 0.44
0.5 16.30± 0.08 4.03± 0.01 1.14± 0.02 0.47
0.7 16.40± 0.09 4.04± 0.01 1.15± 0.02 0.55
0.9 16.28± 0.08 4.02± 0.01 1.17± 0.02 0.44
1 16.29± 0.08 4.02± 0.01 1.14± 0.02 0.44
2 16.40± 0.07 4.04± 0.01 1.13± 0.01 0.33
3 16.31± 0.11 4.03± 0.02 1.15± 0.02 0.79
4 16.16± 0.07 4.01± 0.01 1.13± 0.02 0.25
5 16.34± 0.08 4.04± 0.01 1.14± 0.02 0.43
6 16.07± 0.09 4.01± 0.01 1.14± 0.02 0.54
7 15.99± 0.08 4.02± 0.01 1.18± 0.02 0.34
8 15.63± 0.05 4.00± 0.01 1.15± 0.01 0.17
9 15.56± 0.08 4.01± 0.01 1.13± 0.02 0.44
10 15.54± 0.09 4.02± 0.01 1.11± 0.01 0.66
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Figure 5.2.: Demonstration of the scaling ansatz (4.36) at half filling (E = 0) for three
different values J , for the case of Heisenberg impurities. The vertical dashed
line corresponds to the critical disorder, ε = 0.

large enough to be able to neglect irrelevant scaling variables [SO14]. Another possible
reason is the large energy broadening η due to our choice of the ratio L3/M = 20.

Nevertheless, the scaling of Wc with J for small J ∈ [0, 1] is analyzed. The results are
shown in figure 5.4. A scaling like

Wc = W 0
c +W 0

c

(
a2

c

Deτ0
s

) 1
ϕ

(5.9)

has been suggested for the shift of the critical disorder Wc in the presence of local
magnetic moments [KMV09, KMVS12]. W 0

c is the critical disorder of the pure Anderson
model (2.12), De is the diffusion constant, and (τ0

s )−1 is the magnetic relaxation rate at
zero temperature [KMVS12],

(τ0
s )−1 = 2π nM S2 J

2

D2
ρ(EF) . (5.10)

Here, D = 12t is the band width in die absence of disorder. Thus, a scaling like

Wc(J) ∼ J2/ϕ (5.11)

is expected. We use the fit model Wc(J) = aJµ + b, where µ = 2/ϕ. The fitting results
are summarized in table 5.2.

Scaling theory predicts ϕ = 2ν [KL81], while it has been argued that in the presence
of local magnetic moments, it should rather be ϕ = 2ν + 3 [Weg87b]. We test both
hypotheses on our data. Figure 5.4 shows that neither of the two analytic predictions
agrees perfectly with our best fit, which lies somewhere in between. On the other hand,
fixing ϕ to one of the analytic formulas, using either the established value for ν [RVSR11]
or the average value found in our FSS analysis (ν̄ = 1.15 ± 0.02), results in curves still
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Figure 5.3.: The dependence of the fit parameters (a) Wc, (b) α0 and (c) ν on the
exchange coupling J , for Heisenberg (H) as well as Ising (I) impurities.
The dashed lines mark values from [RVSR11] (for the orthogonal symmetry
class).
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Figure 5.4.: Fitting Wc(J) for small J/t ∈ [0, 1] (Heisenberg impurities).

fitting the data quite well within the errorbars, although the quality of the fit is somewhat
diminished (χ2

red > 1). The free fit however, which yields µ = 2/ϕ = 0.49±0.05, has the
only decent fit quality with a reduced χ2 statistic close to one (see table 5.2).

5.4. Influence on the phase diagram

Using the empirical scaling ansatz (4.51) and the contour finding method described
in section 4.4, the phase diagram of disorder in the E-W plane can be estimated for
fixed J . We show the phase trajectories for a few selected values of J in figures 5.5
and 5.6. As our data resolution on the W -axis is limited for J > 0, the fluctuations of
the phase trajectory are higher than those obtained in the case of the Anderson model
(cf. figure 4.7). Also, we have not acquired data below the range of interest for the
parameter W .

Even under the above restrictions, it is interesting to analyze the tendencies of the
critical disorder Wc in dependence of J for energies away from the band center. In
the case of Heisenberg impurities (figure 5.5), first the shallow valley that exists in the
phase trajectory for J = 0 around E = 0 dissolves for increasing J . After reaching the
maximum value at about J/t = 6, the whole trajectory decreases to smaller values of
Wc, but around E = 0, the drop is progressing more rapidly than in other band regions,
forming a deep valley around E = 0 at J/t = 10.

Also in the case of Ising impurities (figure 5.6), the shallow valley around E = 0
dissolves for small couplings J > 0, but the values Wc never go beyond the J = 0
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5.4. Influence on the phase diagram

Table 5.2.: Fit results for Wc(J) for small values of the exchange coupling strength J/t ∈
[0, 1]. In the top row, µ is a free fit parameter. Otherwise, µ = 2/ϕ is fixed
to values (shown in bold) according to the given analytic formulas for ϕ
[Weg87b, KMVS12], using either ν = 1.590(1.579, 1.602) [RVSR11] or our
own average value ν̄ = 1.15± 0.02.

ϕ = . . . a µ b χ2
red

free fit 1.94± 0.09 0.49± 0.05 16.19± 0.06 0.99

2ν + 3 1.88± 0.16 0.32 16.10± 0.11 3.45
2ν 1.94± 0.12 0.63 16.27± 0.07 1.91

2ν̄ + 3 1.91± 0.12 0.38 16.13± 0.08 1.92
2ν̄ 1.90± 0.23 0.87 16.40± 0.13 6.61
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Figure 5.5.: Phase diagram of the Anderson-Heisenberg model for selected values of the
exchange coupling strength J , obtained using the empirical scaling ansatz
(4.51).

85



5. Effective model for the impurity band electrons of phosphorus-doped silicon

6 4 2 0 2 4 6
E/t

15.5

16.0

16.5

17.0

W
/t

J/t=0

J/t=5

J/t=7

J/t=10

Ising

Figure 5.6.: Phase diagram of the Anderson-Ising model for selected values of the ex-
change coupling strength J , obtained using the empirical scaling ansatz
(4.51).

trajectory. There is a strict downward tendency for all energies. For very large exchange
couplings, as shown for J/t = 10, the valley at the band center reappears, similar to the
case of Heisenberg impurities.

However, these findings should be considered with caution. As discussed in section 4.4,
using the empirical scaling ansatz (4.51) is an approximate method at best, especially
when moving away from the band center E = 0, where the second argument of the
function F (x, y) in equation (4.36) cannot be considered constant. According to equa-
tion (3.30), η is a non-trivial function of M and E, and the DOS ρav(E) is obviously
far from constant when approaching the band edge. Scaling with the exponent p in
equation (4.51) then means altering both arguments of F (x, y) at the same time, which
is hard to control. Still, our results for the phase diagrams might provide a first quali-
tative glimpse. More accurate investigations of the full phase diagram of disorder of the
Anderson-Heisenberg model (5.2) remain to be done.
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6. Conclusions

In this thesis, the effects of local magnetic moments on the Anderson metal-insulator
transition (AMIT) have been investigated. Chapter 2 reviewed fundamental aspects
regarding the problem of localization that were related to the present analysis, including
a clarification of the physical situation leading to the metal-insulator transition (MIT) in
phosphorus-doped silicon (Si:P) [vL00]. An effective model has been used to approximate
the dynamics of the impurity band electrons in Si:P in the presence of local magnetic
moments, based on the concept of a two-fluid model [Sac89].

In chapter 3, the numerical methods used in the analysis were explained. The kernel
polynomial method (KPM) was used to calculate the local density of states (LDOS)
[WWAF06]. A finite-size scaling (FSS) ansatz for the typical density of states, which is
the geometric ensemble average of the LDOS (GLDOS), has been introduced in chap-
ter 4 [ASO06] and tested against established results for the Anderson model [And58].
Furthermore, a simple empirical scaling ansatz for the GLDOS has been considered,
which allowed for a qualitative estimation of the phase diagram in the energy-disorder
plane [JCK12].

Using the FSS ansatz, the effective model for the impurity band electrons has been
studied in chapter 5. The formation of local magnetic moments was approximated
by an exchange coupling of the itinerant electrons to two kinds of classical magnetic
impurities: Heisenberg impurities and Ising impurities. The influence of the exchange
coupling parameter on the critical disorder strength at half filling has been examined
for fixed impurity concentration. Also, the empirical scaling ansatz has been used to
observe the qualitative behavior of the critical disorder away from half filling, under the
influence of an increasing coupling strength.

We find that in the presence of Heisenberg impurities, the critical disorder Wc increases
for a certain range of coupling parameter values J , while Ising impurities lower Wc for
increasing J . This behavior can be qualitatively explained by a change of symmetry
from orthogonal to unitary, caused by the Heisenberg impurities. Also a modification of
the parameter α0, which originates from the description of the multifractal properties of
critical states, is observed when entering the unitary regime. We can roughly estimate its
unitary value to α0 ≈ 4.3. It would be interesting to see this value verified (or falsified)
by alternative approaches.

Despite meeting expectations qualitatively, it was only partially possible to reproduce
established values for the parameters characterizing the AMIT. While the orthogonal
value for α0 (α0 = 4.01 ± 0.01) matches the expected value α0 = 4.048(4.045, 4.050)
[RVSR11] quite well, our result for ν ≈ 1.15 ± 0.02 is considerably smaller than the
expected value ν = 1.590(1.579, 1.602) [RVSR11]. Also the critical disorder amplitude
Wc/t ≈ 16.20 ± 0.06 of the pure Anderson model deviates somewhat from the value
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Wc/t = 16.530(16.524, 16.536) [RVSR11], which has been confirmed on several occasions
using various methods during the past decades [BSK87, KM93, BK94, EM08].

The solutions to the above problems could be found by using a better energy resolution
within the KPM, or by considering irrelevant scaling variables in the finite-size scaling
ansatz [SO14]. However, both measures would require a significant increase of numerical
effort. Taking into account the disorder dependence of the average density of states could
also improve the scaling analysis, although test calculations have not shown a significant
impact on the fitting results. Future investigations should keep the second argument of
the scaling ansatz exactly constant anyway, to allow for a precise estimate of the phase
transition away from half filling.

We find moderate agreement with analytical predictions [KL81, Weg87b, KMVS12]
for the scaling exponent of the function Wc(J). However, because of the above problems,
and also because of the limited accuracy of the data, we can not exclude the validity
of either of them with certainty. The methodological issues have to be solved first, and
testet against known results for well-studied systems like the Anderson model.

The results for the complete phase diagram in the energy-disorder plane show good
qualitative agreement with established results for the pure Anderson model [BSK87,
SF09], despite the vast approximations considered in the empirical FSS ansatz. Also
the evolution of the phase diagram of the Anderson-Heisenberg model for an increasing
coupling strength already gives some insight into the effects of local magnetic moments
on the phase transition. However, future investigations should consider the full scaling
ansatz, also away from the band center. This will require the consideration of the
precise energy and disorder dependence of the average density of states and of the energy
dependence of the energy resolution within the KPM.

Finally, the significance of the effective model that is used to study the influence of
magnetic moments on the Anderson transition is limited, considering the MIT in real
Si:P. It successfully shows that the critical disorder strongly depends on the coupling
strength. It can be expected that also the critical dopant density is significantly deter-
mined by the concentration of local moments present in Si:P. However, in real Si:P, the
concentration of moments is a function of the dopant density itself, and the strength of
the Coulomb repulsion must be taken into account as well. It is therefore desirable to
consider a more sophisticated variant of the Anderson-Hubbard model in coming inves-
tigations, which is more closely related to the situation in real materials, going beyond
the concept a two-fluid model [Sac89].

Overall, it can be summarized that problems occur mostly due to immaturenesses
of this innovative combination of numerical methods, partly within the relatively un-
explored kernel polynomial method, partly in minute details within the scaling ansatz
for the typical density of states. There is hope that these problems will turn out as
small flaws that can be eradicated after some further development, and to find a reliable
method for studying the metal-insulator transition in various models.
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A. Miscellaneous derivations

In this appendix, some lengthy derivations of minor importance are carried out that did
not fit into the main text.

A.1. Recurrence relations for Chebychev polynomials of first
kind

The Chebychev polynomials of the first kind read [WWAF06]

Tm(x) = cos(m arccos(x)) . (A.1)

There exist recurrence relations

Tm+1(x) = 2xTm(x)− Tm−1(x) (A.2)

for all m > 0, with T0(x) = 1 and T1(x) = x.

In the following it is shown that the recurrence relations (A.2) hold for the Chebychev
polynomials (A.1):

Proof. Start from (A.2),

Tm+1(x) = 2xTm(x)− Tm−1(x) . (A.3)

Insert the definition of Chebychef polynomials (A.1),

cos((m+ 1) arccos(x)) = 2x cos(m arccos(x))− cos((m− 1) arccos(x)) .

Make the substitution y = arccos(x),

cos((m+ 1)y) + cos((m− 1)y) = 2 cos(y) cos(my)

cos(my + y) + cos(my − y) = 2 cos(y) cos(my)

cos(my) cos(y)− sin(my) sin(y) + cos(my) cos(y) + sin(my) sin(y) = 2 cos(y) cos(my)

2 cos(my) cos(y) = 2 cos(y) cos(my)
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A.2. Sample variance of the geometric mean

The arithmetic mean x̄ of a discrete random variable x is defined as

x̄ =
1

N

N∑
i=1

xi , (A.4)

whereN is the sample size. It is a good estimator for the population mean. Its (unbiased)
sample variance is well known,

σ2
x =

1

N − 1

N∑
i=1

(xi − x̄)2 =
x2

N − 1
− x̄2

N(N − 1)
. (A.5)

We introduce the quantity y, which is defined as the logarithm of the random variable x,
y = log x. Its arithmetic mean and variance is calculated according to (A.4) and (A.5),

ȳ = log x =
1

N

N∑
i=1

log xi , (A.6)

σ2
y = σ2

log x =
1

N − 1

N∑
i=1

(log xi − log x)2 =
(log x)2

N − 1
− log x

2

N(N − 1)
. (A.7)

Now, the geometric mean of x is

z = elog x = ey . (A.8)

We estimate the statistical error of z, given by its standard deviation σz, by

σz = z1 − z2 = eȳ(eσy − 1) , (A.9)

with
z1 = eȳ+σy (A.10)

z2 = eȳ . (A.11)

Assuming σy to be small, we approximate

σz = eȳ(eσy − 1) ≈ eȳσy (A.12)

and hence the estimate of the sample variance of the geometric mean is given by

σ2
z ≈ e2ȳσ2

y . (A.13)

The same result has been obtained by Norris [Nor40] using more profound mathematical
arguments.
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B. Additional remarks regarding the
numerical methods

For the analysis in this work, extensive software had to be developed, mainly due to the
lack of available implementations of tight binding models1 and the kernel polynomial
method (KPM) [WWAF06]. The implementation was mainly done in the object-oriented
programming language Python [Dub99, Oli07, Lan08], extended by the popular modules
numpy [ADH+99] and scipy [JOPO07]. Performance-criticial parts have been written in
Cython [Sel09, BBC+11], a project which aims to become a superset of Python, adding
the ability to be partially translated to statically compilable C code. All figures have
been created using the matplotlib library [Hun07].

The author encourages the use and publication of open source software, as it spurs
scientific productivity and a rapid exchange of ideas. In this manner, the software
developed in this thesis is going to be published as an open source software project in
the near future2. May it serve as a starting point for future investigations, or as the
basis of a larger open source project offering different forms of tight binding and kernel
expansion techniques to the Python community.

Using our implementation of the kernel polynomial method (KPM) (see chapter 3),
it is easy to obtain the density of states (DOS) (2.10) or the local density of states
(LDOS) (3.1) of a tight binding Hamiltonian. In the absense of disorder, the DOS of the
Hamiltonian (2.1) is identical to the LDOS at any lattice site, so the KPM algorithm
for the LDOS can be used for its calculation (see section 3.2.4). To illustrate the usage
of our software, the source code used to obtain figure 2.2 is given:

import tb.sc, kpm, matplotlib.pyplot

mat = tb.sc.scnnmat(shape=(100, 100, 100), format=’csr’)

energ, dens = kpm.ldos(mat, estep=.1, erange=(-7, 7), limit=350)

matplotlib.pyplot.plot(energ, dens)

The total execution time is about 25 seconds (using a standard desktop computer), where
most of the time is spent on creating the tight binding matrix of this rather big system
with N = L3 = 1003 lattice sites (second line in the source code).

1 In the meantime, there exists another project regarding tight binding models in Python, focussing
mainly on band structure calculations: http://www.physics.rutgers.edu/pythtb/.

2 The main projects are hosted at http://github.com/proggy/tb/ and http://github.com/proggy/

kpm/.
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B. Additional remarks regarding the numerical methods

B.1. Fitting methods

For fitting model functions to our data we use the Python module lmfit [New13], which
utilizes the Levenberg-Marquardt algorithm [Lev44, Mar63] for the minimization of the
squared residuals. Besides some advantages of the lmfit module concerning usability
(e.g., object-oriented organization of model parameters), this constitutes the standard
practice in numerical science.

The error of our input data is accounted for in the form of a linear weighting of the
data points. The residual function is defined as usual,

R(x, y, sy, P ) =
f(x, P )− y

sy
, (B.1)

where y is the independent data value, sy the associated error value (in our case, the
standard error of either the arithmetic or the geometric mean), and x the dependent
data value. f(x) is the fit model that is meant to fit the data. The sum of the squared
residuals R(x, y, sy, P ) is then minimized to find the optimal set of fit parameters P
(least-squares method). The residual function can easily be generalized to the case of
multiple dependent data values x, as it is needed for the scaling ansatz for the GLDOS
(see chapter 4).

Like many other implementations of the Levenberg-Marquardt algorithm, also lmfit is
yielding an estimate for the covariance matrix. So an estimate of the standard deviation
of the resulting fit parameters can be obtained by taking the square root of the diagonal
elements of that matrix, which allows for an indirect but simple way to propagate the
error of the original data.
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Ĥ0 Basic Hamiltonian without magnetic impurities (77)
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