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Abstract

The inclusion of more and more renewable energy sources into mod-
ern power grids leads inevitably to drastic changes of the topology
of power grids. Nevertheless it is not known to date what an op-
timal network topology for power transport and robustness could
be [1]. Here we use the recently introduced novel criteria of re-
dundant capacities to identify weak links in power grids [2]. We
propose new strategies to cure these critical links and show their
advantages over possible alternatives. Our results may serve as a
step towards optimal network topologies in real-world power grids.

In an alternative approach, we investigate the long-range response
to transmission line disturbances in DC and AC grids. Local changes
in the topology of electricity grids can cause overloads far away from
the disturbance [3], making the prediction of the robustness against
power outages a challenging task. The impact of single-line addi-
tions on the long-range response of DC electricity grids has recently
been studied [4]. In the future, we are going to extend the inves-
tigation to the case of alternating currents. To that end, we study
electricity grids with a random distribution of complex impedances
on the edges of a regular 2D grid. By determining the resonance
frequencies of the circuit, we are able to forecast consequences for
the conditions for stable grid operation. Further, we analyse the
spatial distribution of the voltage amplitudes.

Oscillator model

Main features of the model
[5]:
→Derived from

electric circuits of
generators & motors

→ Two variables
each generator or motor
(phase φ and velocity φ̇)

The equation of motion for each unit is:

φ̈i = Pi − αiφ̇i + Kij

∑
j 6=i

ai,j sin(φj − φi) (1)

→ loads of the power sources (Pi)
→maximum transmission of lines (Kij)
→ time scale of phase changes (α−1

i )
→ adjacency matrix (aij)

Decentralization

→ Synchronization transition for
different fractions of
renewable energies and
different network topologies
(regular, small-world, random)

→ The results of the order param-
eters are averages over 100 re-
alizations
in the long time limit

→ Synchronization is faster in
case of higher fraction of re-
newables [1]
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Power outages

Power outage in Germany in 2006 after the intentional shutdown
of a single transmission line [6].
P. Pourbeik: “Typically, the blackout can be traced back to the
outage of a single transmission element.” [7]

Breakdown of transmission lines
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Figure 1: Stable and critical links [8]. (a) Romanian high voltage
power grid. (b) Failure of a critical transmission line. (c) Failure
of a non-critical transmission line.

Color Code of transmission lines: power flow
Red squares: conventional power sources
Green diamonds: renewable power sources
Blue circles: consumers

Strategies to prevent power outages

→ Building more transmission lines?
→ Identifying heavily loaded transmission lines and strengthen

them?
→ Calculate redundant capacities, i.e., the difference between ca-

pacities and loads of transmission lines?
→ Consider alternative paths for the power flow of critical lines?

In preparation: Performance of different strategies
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Figure 2: Performance of four different strategies for the Roma-
nian high voltage power grid [8].

→ Blue curve: Additional backup transmission line
as benchmark strategy.

→ Black curve: Increase capacity of transmission lines
at the global minimum of the difference between capacity and
power flow.

→ Red curve: Increase the capacity of transmission lines sequen-
tially at the bottleneck of the alternative paths.

→ Green curve: Increase the capacity of transmission lines simulta-
neously at the bottleneck of the alternative paths.

Summary and Outlook

→ Identifying and strengthening of the capacity of bottlenecks of
alternative paths seems to be a good strategy

→Which are the limitations for this method?
→Maximal length for the alternative path for the method in order

to work more efficiently?
→ General topologies?
→Optimal network structure?

Long-range response in DC electricity grids

What effect does the addition of a single transmission line have on
the stability of the network?

Model
→ 2D grid with periodic boundary conditions, L× L.
→ Constant link conductances Yij ∈ R, i.e. ohmic resistances [4].
→ Consider Joule’s heat dPΩ

ij .
Combine Ohm’s law

Iij = YijVij (2)
with Kirchhoff’s laws

Ii =
∑
j

Iij Vij = Vi − Vj (3)

and transmitted powers Fij = ViIij to get power flow equations

Pi = Vi
∑
j

Yij(Vi − Vj) . (4)

Observe change ∆Fij in the transmitted power as a function of
the distance r from the disturbance after one line has been added.

( a ) Change of power flow. ( b ) Distance dependence.

Figure 3: Change of power flow ∆Fij in dependence of the dis-
tance r to the added link [4].

⇒ 〈|∆Fij|〉 ∼ r−β β ≈ 1.3 (5)

In preparation: Long-range response in AC grids

→ Extend the method to AC power grids.
→ First consider only current flow equations and the resonance

case, Ii = 0∀ i [9].
→ Start with binary distribution for the link admittances Yij ∈ C

with composite ratio q [9].

( a ) 2D grid.
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( b ) Resonance spectrum.

Figure 4: Density of resonance frequencies ρ(λ) of a regular 2D
grid with a binary distribution of capacitances and inductances.

Outlook
→ Simulate power flow (like in the DC case).
→ Consider realistic network topologies.
→ Consider realistic admittance distributions P(Yij).
→ Consider realistic power consumption and generation distribu-

tions P(Pi).
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