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Abstract

We study the effects of classical magnetic impurities on the Ander-
son metal-insulator transition numerically [1]. We find that a small
concentration of Heisenberg impurities enhances the critical disor-
der amplitude Wc with increasing exchange coupling strength J due
to time-reversal symmetry breaking. The resulting scaling with J is
analyzed which supports an anomalous scaling prediction by Weg-
ner due to the additional spin-rotational symmetry breaking. The
results are obtained by a finite-size scaling analysis of the geomet-
ric average of the local density of states. The latter can efficiently
be calculated by means of the kernel polynomial method. We dis-
cuss the relevance of our findings for systems like phosphor-doped
silicon, which exhibit a metal-insulator transition driven by both
interaction and disorder, accompanied by the presence of magnetic
moments.

Metal-insulator transition in phosphorus-doped silicon

→ A rising concentration of phosphorus dopants increases the over-
lap between the hydrogen-like donor states (see figure 1), but
also increases disorder [2], leading to regions of localized states
in the DOS.

→ High concentration: Impurity band forms (half filled) [2].
→ Impurity band contains localized and extended states, devided

by mobility edges [2].
→ Coulomb repulsion favors single occupancy of the donor states,

leading to the formation of spin-1/2 magnetic moments within
the localized donor states [2].

( a ) Low concentration. ( b ) High concentration.

Figure 1: Sketch of the hydrogen-like orbitals of the phosphorus
donors inside the silicon bulk (gray).
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( a ) Insulating side.
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( b ) Metallic side.

Figure 2: Schematical band diagrams for phosphorus-doped sil-
icon: (a) For low donor concentration, the singly-occupied donor
states cause spin-1/2 moments. (b) For high donor concentration,
an impurity band is forming. Far enough on the metallic side of the
transition, the moments have vanished.

How do the local magnetic moments affect the metal-
insulator transition in phosphor-doped silicon?
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The Anderson-Heisenberg model

→ Effective model for the impurity band electrons in phosphor-doped silicon,
donor atoms are placed on a three-dimensional lattice.

→ Neglect random distribution of donor atoms and instead let disorder enter by
a random potential, i.e. start from the Anderson model [3]:

Ĥ0 = t
∑
〈i,j〉,σ

|j, σ〉 〈i, σ| +
∑
i,σ

εi |i, σ〉 〈i, σ| . (1)

i, j: lattice site index σ: spin index
t: hopping amplitude
εi: random potential, box distribution of width W

→ Simulate the magnetic moments by adding an exchange coupling to classical
magnetic impurities (two-fluid model):

Ĥs =
N∑
i=1

Ji ~Si · ~σi

= S
∑
i

Ji

(
cos θi

∑
σ=±1

σ |i, σ〉 〈i, σ|

+ sin θi
∑
σ=±1

exp(iσϕi) |i, σ〉 〈i,−σ|

)
. (2)

~S: Magnetic moment, random orientation
~σ: Pauli matrices

Ji =

{
J at impurity sites (concentration nM = 5 %) ,
0 elsewhere.

J : Exchange coupling strength
→ Full hamiltonian of the “Anderson-Heisenberg model”: Ĥ = Ĥ0 + Ĥs.
→ Breaking time-reversal and spin-rotational symmetry for J > 0.
⇒ Entering unitary regime.

The kernel polynomial method

→ Calculate spin-resolved local density of states by a polynomial series expansion
based on Chebychev polynomials (exact for M →∞) [4]:

ρi,σ(Ẽ) = 1
π
√

1− Ẽ2

µ(i,σ)
0 + 2

M∑
m=1

µ(i,σ)
m Tm(Ẽ)

 . (3)

Chebychev polynomials (of first kind) [4]:

Tm(Ẽ) = cos(m arccos(Ẽ)) , Ẽ ∈ [−1, 1] . (4)

Chebychev moments in case of the LDOS [4]:

µ(i,σ)
m =

1∫
−1

ρi,σ(Ẽ)Tm(Ẽ) dẼ = 〈i, σ|Tm(H̃) |i, σ〉 . (5)

→ Properties of the kernel polynomial method:
– Order-of-N method (given a N ×N sparse matrix H).
– Recursive formulas to calculate the moments µn iteratively, allowing for

efficient algorithms.
– Obtain information about the whole spectrum at once, without additional

effort.
– Finite but well-defined spectral resolution η̃, depending on spectral position
Ẽ and number of moments M [5].

Finite-size scaling of the typical density of states

→ Calculate geometric average of the local density of states (GLDOS, also typ-
ical density of states) [5]:

ρ
(i)
typ(E) = exp 〈log ρi(E)〉 . (6)

(We average over 8000 disorder realizations and lattice sites.)
→ Finite-size scaling ansatz for fixed Ẽ = 0 and Ld/M = 1 [6]:

Γ(W,L) = Ld−α0 F̃ (ψL1/ν) . (7)
with Γ = ρtyp/ρav and the reduced disorder ψ = (Wc −W )/Wc.

→ Expand unknown function F̃ (x) in a power series [6]:

F̃ (x) =
nF∑
n=0

Fn x
n . (8)

→ Criterion for the selection of nF ∈ {2, 3, 4}: Minimize |1/2 − Q|, with the
goodness of fit probability Q (GOF).
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Figure 3: Demonstration of the scaling ansatz (7) at half filling (E = 0)
for nF = 2 and three different values J . The errorbars correspond to 95 %
confidence.
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Figure 4: Dependence of the fit parameters Wc (a), α0 (b) and ν (c) on the
exchange coupling J , using different series expansion orders nF. The dashed
horizontals mark established values for the pure Anderson model (A, realised by
our model for J = 0) [7], a model considering an external magnetic field (M)
[8], the 3D orthogonal (O) [9, 10] and the 3D unitary (U) universality class [10].
For Wc(J), the data with minimal |1/2−Q| (a) is fitted to (10) using ν = 1.571
[9]. The errorbars correspond to 95 % confidence.

→ A finite concentration of magnetic moments can change the critical disorder
Wc. Analytic prediction [11]:

Wc = W 0
c + W 0

c

(
a2

c
L2

s

) 1
ϕ

. (9)

1/τs: Magnetic scattering range, 1/τs ∼ J2.
Ls =

√
Deτs: Spin-relaxation length.

→ Expected scaling with J [11]:

Wc(J) = aJµ + b with µ = 2
ϕ

. (10)

→ Analytical predictions for the exponent ϕ:
Simple scaling theory: ϕ = 2ν [12]
2nd-order 2 + ε expansion (for ε = 1) . . .
. . . for an external magnetic field: ϕa = 2ν [13]
. . . for local magnetic moments: ϕs = 2ν + 3 [13]

Table 1: Fit results for Wc(J). In the top row, µ is a free fit parameter.
Otherwise, µ = 2/ϕ is fixed to values (shown in bold) according to the given
analytic formulas for ϕ [12, 13], using either ν = 1.571(1.563, 1.579) [9] or our
own value ν̄ = 1.48± 0.06. The best fit result (smallest |1/2−Q|) is marked.

ϕ = . . . a µ b χ2 Q
Free fit 3.40± 0.46 0.27± 0.09 16.52± 0.21 11.3 0.13
2ν + 3 3.61± 0.34 0.33 16.57± 0.19 12.0 0.15
2ν 4.52± 0.70 0.64 16.89± 0.26 28.4 4 · 10−4

2ν̄ + 3 3.64± 0.35 0.34 16.58± 0.19 12.2 0.14
2ν̄ 4.62± 0.75 0.67 16.93± 0.27 30.9 1 · 10−4

→ Quality of fit probability Q is only within an acceptable range for the hypoth-
esis ϕ = 2ν + 3.

Conclusions

→We observe a modification of the critical disorder Wc when adding magnetic
impurities to the Anderson model that break both time-reversal and spin-
rotational symmetry.

→ Results for the scaling exponent µ = 2/ϕ support Wegner’s prediction
ϕ = 2ν + 3 [13] for the scaling of Wc with the coupling strength J .

→We use the kernel polynomial method to efficiently calculate the local density
of states [4, 5].

→We analyse the finite-size scaling of the geometrically-averaged local density
of states to obtain the critical parameters of the metal-insulator transition
[6, 14, 1].

→We estimate the critical parameters α0 and ν for the 3D orthogonal (J = 0)
and the 3D unitary (J > 0) universality class that mostly agree with other
studies (with the exception of αU

0 ) [15, 7, 9, 10].

Outlook

→ Use an even lower value of Ld/M within the kernel polynomial method to
prevent mixing of critical with non-critical states.

→ Check higher-order 2 + ε expansion results for ϕ using a refined Borel-Padé
analysis [16].

→ Use data for the whole range of energies (provided by the kernel polynomial
method for free) to obtain “phase diagrams” in the W -E plane.

Acknowledgements

→We are grateful for discussions with Georges Bouzerar, Ki-Seok Kim, Hyun-
Yong Lee and Eduardo Mucciolo.

→ Support: WCU program, NRF Korea, funded by KOSEF (R31-2008-000-
10059-0), Division of AMS.

→ Computational resources: CLAMV Blackpearl cluster, Jacobs University Bre-
men, Germany.

Delocalisation 2015: Delocalisation Transitions in Disordered Systems, APCTP, POSTECH University, Pohang (South Korea), July 24 – August 2, 2015.


