JACOBS **UNIVERSITY**

Long-range Response to Local Grid Modifications in AC Electricity Grids

SPONSORED BY THE

D. Jung¹ **S.** Kettemann¹

¹ Department of Physics & Earth Sciences, Focus Area Health, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany

d.jung@jacobs-university.de s.kettemann@jacobs-university.de

Abstract

Local changes in the topology of electricity grids can cause overloads far away from the disturbance [1], making the prediction of the robustness against power outages a challenging task. The impact of single-line additions on the long-range response of DC electricity grids has recently been studied [2]. By solving the steady state AC load flow equations, we extend the investigation to the case of alternating currents. Later, we are going to use these steady state results in order to study the time-dependent spreading of local phase perturbations throughout the grid, following a new approach

Response to adding another transmission line

 \rightarrow Add another "diagonal" transmission line somewhere in the grid and observe the change of power flow $\Delta F_{ij} = F_{ij}^{\text{after}} - F_{ij}^{\text{before}}$ for each transmission line (i, j).

Finite-size scaling

from a recent analytical study [3].

Power flow in an AC grid

Complex power flow equations

 \rightarrow From *Ohm's law* and *Kirchhoff equations*, deduce the *steady* state power flow equations (PFE) for a 1-phasic AC network,

> $S_i - V_i \sum_j Y_{ij}^* (V_i - V_j)^* = 0$. (1)

Here, $S_i = P_i + iQ_i$ is the *net generated power* entering the electricity grid at node i, with P_i the active power and Q_i the *reactive power*, and $i, j \in \{1, 2, ..., N\}$, with N the number of nodes.

Complex PFEs for an inductive grid

 \rightarrow Assume a purely *inductive* grid and sinusoidal voltages. *Admittance* of edge (i, j) (representing a transmission line):

$$Y_{ij} = \frac{1}{i\omega L_{ij}} \quad , \tag{2}$$

- \Rightarrow By doing so, we can assume constant voltage magnitudes, $|V_i| \equiv V_0$ [3].
- \rightarrow Define *power capacity* of edge (i, j) [3]:

$$K_{ij} = \frac{V_0^2}{\omega L_{ij}} \quad . \tag{3}$$

(4)

(6)

 \rightarrow Consider voltage *phase angles* $\varphi_i(\omega, t) = \omega t + \theta_i(t)$, with the

Figure 2: (a) Power flow of the same system as in Fig. 1 after the addition of another transmission line. (b) Change of transmitted power after adding the line. The width of each line is proportional to the absolute change of transmitted power, $|\Delta F_{ij}|$.

- \rightarrow To analyze response properties, define the distance r_{ij} of the edge (i, j) to the added edge (see Fig. 3).
- \rightarrow Average $|\Delta F_{ij}|$ over all edges (i, j) with the same distance r to the disturbance, and over R = 1000realizations of disorder.
- \rightarrow Realizations for which no stable solution can be found are skipped.

Figure 5: (a) Dependence of the exponent b on the linear system size l (regime R2). (b) Scaling behavior of saturation value $\langle |\Delta F_{ij}| \rangle (r = l - 2)$ on system size l.

Long-range response in DC electricity grids

- \rightarrow It is worthwhile to compare these results to a recent study on the long-range response in DC electricity grids [2].
- \rightarrow Considering constant link conductances $Y_{ij} \in \mathbb{R}$, ohmic resis*tances* as well as Joule's heating dP_{ij}^{Ω} [2].

Figure 6: Change of DC power flow ΔF_{ij} in dependence of the distance r to the added link [2]. (a) Regime R1, (b) regime R2.

- \rightarrow Finding power law dependence as well, but with different exponents $b_{\text{DC,R1}}$ and $b_{\text{DC,R2}}$ (see Fig. 6).
- ightarrow In DC system, $b_{
 m DC,R1}$ > $b_{
 m DC,R2}$, whereas in AC system, $b_{\rm R1} < b_{\rm R2}$.

Figure 3: Classification of the transmission lines by their distance r to the added line (black).

grid frequency $\omega = 2\pi \cdot 50 \text{ Hz}$ [3]. \rightarrow Thereby, the *PFEs* (1) can be rewritten as $S_i = i \sum_{i} K_{ij} \left(1 - e^{i(\theta_i - \theta_j)} \right) \quad .$

Real part of the power flow equations

 \rightarrow In this study, we only consider the real part of the PFEs:

$$P_i = \sum_j K_{ij} \sin(\theta_i - \theta_j) \quad . \tag{5}$$

 \Rightarrow Disregard *reactive power*.

 \Rightarrow System of N nonlinear equations, solvable by a standard *root*finding algorithm¹ in order to find the phase distribution θ_i . \rightarrow Afterwards, compute the *transmitted power*

 $F_{ij} = K_{ij} \sin(\theta_i - \theta_j)$

for each edge (i, j) of the graph.

Model

- \rightarrow Cyclic square 2D grid graph, size $N = l^2$.
- ightarrow Binary distribution for nodal *net generated power* $P_i \in$ $\{-P_0, +P_0\}$. Condition $\sum_i P_i = 0$ must be fulfilled, so the linear system size *l* must be an even number.
- \rightarrow Consider constant *power capacities* $K_{ij} = K_0$.

Figure 4: Double-logarithmic plot of $\langle |\Delta F_{ij}| \rangle(r)$ for different system sizes l. For the regimes R1 ($r \le 3$) and R2 ($r \ge 3$), the data has been fitted to a power law (7).

 \rightarrow We observe a *power law* behavior of $\langle |\Delta F_{ij}| \rangle(r)$ (see Fig. 4). We fit the data to the fit model

$$f(r) = ar^{-b} \quad . \tag{7}$$

- \rightarrow Two regimes R1 and R2 can be distinguished, roughly separated by r = 3, with different exponents b_{R1} and b_{R2} . Tab. 1 and 2 summarize the fit results for both regimes.
- $\rightarrow \langle |\Delta F_{ij}| \rangle$ saturates for $r \rightarrow L$ (or even slightly increases again). The saturation values themselves (for which r = l - 2) decay as a power law with increasing system size l (see Fig. 5(b)).
- **Table 1:** Fit results for regime R1 (short range behavior). For each system size l, only data for $r_{\min} \leq r \leq r_{\max}$ is considered. To assess the quality of the fit, χ^2 and the quality of fit probability Q are given.

$$l r_{\min} r_{\max} N_{D} a \qquad b \qquad \gamma^2 Q$$

- $\rightarrow b_{DC,R2}$ decreases with increasing system size l, thus showing an opposing behavior to AC results [2].

 \rightarrow Saturation value (not shown here) also scales as a power law with system size, but with a rather different exponent $d_{\rm DC} \approx 1.36$ [2].

Conclusions

- \rightarrow We have found a short as well as a long range response to local grid modifications.
- \rightarrow The data of the long range regime fits nicely to a power law, whereas the short range regime leads to poor fits.
- \rightarrow Results are similar to those of DC grids, but exponents and finitesize scaling behavior are quite different, e.g. $b_{\rm R2} = 1.826 \pm 0.002$ vs. $b_{\text{DC.R2}} = 1.32$ (each for the largest considered system size).

Outlook

- \rightarrow Application to other topologies including *real-world topologies*.
- \rightarrow Study time-dependent spreading of local phase perturbations, following a recently published approach [3]. Clarify the role of Anderson localization in AC transmission grids.

Acknowledgements

 \rightarrow The numerical calculations have been performed using computational resources of the Computational Laboratories for Analysis, Modeling and Visualization (CLAMV), Jacobs University Bremen, Germany.

Figure 1: (a) Phase distribution θ_i of a 6×6 system with binary distribution of the nodal net generated power $P_i \in \{-P_0, +P_0\}$. (b) Resulting power flow. The size of the arrow is proportional to the transmitted power F_{ij} .

•		· man	- D		•	Λ	4
10	1	4	4	0.00291 ± 0.00002	1.217 ± 0.005	2.46	0.29
20	1	3	3	0.00252 ± 0.00006	1.250 ± 0.026	17.88	0.00
30	1	3	3	0.00226 ± 0.00007	1.252 ± 0.035	29.38	0.00
40	1	3	3	0.00200 ± 0.00006	1.253 ± 0.038	33.85	0.00
50	1	3	3	0.00192 ± 0.00006	1.253 ± 0.039	37.32	0.00
60	1	3	3	0.00175 ± 0.00006	1.253 ± 0.040	38.27	0.00

Table 2: Fit results for regime R2 (long range behavior).

l	r_{\min}	$r_{\rm max}$	$N_{\rm D}$	a	b	χ^2	\overline{Q}
20	3	6	4	0.00369 ± 0.00005	1.586 ± 0.009	3.22	0.52
30	5	8	4	0.00371 ± 0.00009	1.671 ± 0.012	3.50	0.48
40	8	13	6	0.00388 ± 0.00005	1.760 ± 0.006	3.12	0.54
50	7	10	4	0.00390 ± 0.00011	1.783 ± 0.014	3.19	0.53
60	10	19	10	0.00393 ± 0.00002	1.826 ± 0.002	3.27	0.51

 \rightarrow We greatfully acknowledge support of BMBF, CoNDyNet, FK. 03SF0472A.

References

[1] D Witthaut, M Timme. *The European Physical Journal B* 86, 377 (2013).

[2] D Labavić, R Suciu, H Meyer-Ortmanns, S Kettemann. European Physical Journal Special Topics **223**, 2517 (2014).

[3] S Kettemann. Phys. Rev. Lett., under review, arxiv:1504.05525 (2015).

[4] E Jones, T Oliphant, P Peterson, Others. SciPy: Open source scientific tools for Python (2007).

[5] J. J Moré, B. S Garbow, K. E Hillstrom. User guide for MINPACK-1. Technical Report ANL-80-74, Argonne National Laboratory, Argonne, IL, USA (1980).

¹We use the Python function scipy.optimize.fsolve [4], which is a wrapper around the functions hybrd and hybrj of the Fortran package MINPACK [5].

Forschungsinitiative der Bundesregierung

DD 2015: XXXV Dynamics Days Europe 2015, University of Exeter (United Kingdom), September 6–10, 2015.