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Abstract

Local changes in the topology of electricity grids can cause over-
loads far away from the disturbance [1], making the prediction of
the robustness against power outages a challenging task. The im-
pact of single-line additions on the long-range response of DC elec-
tricity grids has recently been studied [2]. By solving the steady
state AC load flow equations, we extend the investigation to the
case of alternating currents. Later, we are going to use these steady
state results in order to study the time-dependent spreading of local
phase perturbations throughout the grid, following a new approach
from a recent analytical study [3].

Power flow in an AC grid

Complex power flow equations
→ From Ohm’s law and Kirchhoff equations, deduce the steady

state power flow equations (PFE) for a 1-phasic AC network,

Si − Vi
∑
j

Y ∗ij (Vi − Vj)∗ = 0 . (1)

Here, Si = Pi + iQi is the net generated power entering the
electricity grid at node i, with Pi the active power and Qi the
reactive power, and i, j ∈ {1, 2, . . . , N}, with N the number of
nodes.

Complex PFEs for an inductive grid
→ Assume a purely inductive grid and sinusoidal voltages. Admit-

tance of edge (i, j) (representing a transmission line):

Yij = 1
iωLij

, (2)

⇒ By doing so, we can assume constant voltage magnitudes,
|Vi| ≡ V0 [3].

→Define power capacity of edge (i, j) [3]:

Kij =
V 2

0
ωLij

. (3)

→ Consider voltage phase angles ϕi(ω, t) = ωt + θi(t), with the
grid frequency ω = 2π · 50 Hz [3].

→ Thereby, the PFEs (1) can be rewritten as

Si = i
∑
j

Kij

(
1− ei(θi−θj)

)
. (4)

Real part of the power flow equations
→ In this study, we only consider the real part of the PFEs:

Pi =
∑
j

Kij sin(θi − θj) . (5)

⇒Disregard reactive power.
⇒ System of N nonlinear equations, solvable by a standard root-

finding algorithm1 in order to find the phase distribution θi.
→ Afterwards, compute the transmitted power

Fij = Kij sin(θi − θj) (6)

for each edge (i, j) of the graph.

Model

→ Cyclic square 2D grid graph, size N = l2.
→ Binary distribution for nodal net generated power Pi ∈
{−P0,+P0}. Condition

∑
iPi = 0 must be fulfilled, so the

linear system size l must be an even number.
→ Consider constant power capacities Kij = K0.
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Figure 1: (a) Phase distribution θi of a 6× 6 system with binary
distribution of the nodal net generated power Pi ∈ {−P0,+P0}.
(b) Resulting power flow. The size of the arrow is proportional to
the transmitted power Fij.

Response to adding another transmission line

→ Add another “diagonal” transmission line somewhere in the grid
and observe the change of power flow ∆Fij = F after

ij − F before
ij

for each transmission line (i, j).
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Figure 2: (a) Power flow of the same system as in Fig. 1 after the
addition of another transmission line. (b) Change of transmitted
power after adding the line. The width of each line is proportional
to the absolute change of transmitted power, |∆Fij|.

→ To analyze response prop-
erties, define the distance
rij of the edge (i, j) to the
added edge (see Fig. 3).

→ Average |∆Fij| over all
edges (i, j) with the same
distance r to the distur-
bance, and over R = 1000
realizations of disorder.

→ Realizations for which no
stable solution can be
found are skipped.
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Figure 3: Classification of
the transmission lines by their
distance r to the added line
(black).

100 101 102

r

10-6

10-5

10-4

10-3

10-2

〈 |∆F
ij
|〉

Errorbars correspond to
95 % confidence intervals.

R1, l=10

R1, l=20

R1, l=30

R1, l=40

R1, l=50

R1, l=60

R2, l=20

R2, l=30

R2, l=40

R2, l=50

R2, l=60

Figure 4: Double-logarithmic plot of 〈|∆Fij|〉(r) for different
system sizes l. For the regimes R1 (r ≤ 3) and R2 (r ≥ 3), the
data has been fitted to a power law (7).

→We observe a power law behavior of 〈|∆Fij|〉(r) (see Fig. 4).
We fit the data to the fit model

f (r) = ar−b . (7)

→ Two regimes R1 and R2 can be distinguished, roughly separated
by r = 3, with different exponents bR1 and bR2. Tab. 1 and 2
summarize the fit results for both regimes.

→〈|∆Fij|〉 saturates for r → L (or even slightly increases again).
The saturation values themselves (for which r = l− 2) decay as
a power law with increasing system size l (see Fig. 5(b)).

Table 1: Fit results for regime R1 (short range behavior). For
each system size l, only data for rmin ≤ r ≤ rmax is considered.
To assess the quality of the fit, χ2 and the quality of fit probability
Q are given.
l rmin rmax ND a b χ2 Q

10 1 4 4 0.00291± 0.00002 1.217± 0.005 2.46 0.29
20 1 3 3 0.00252± 0.00006 1.250± 0.026 17.88 0.00
30 1 3 3 0.00226± 0.00007 1.252± 0.035 29.38 0.00
40 1 3 3 0.00200± 0.00006 1.253± 0.038 33.85 0.00
50 1 3 3 0.00192± 0.00006 1.253± 0.039 37.32 0.00
60 1 3 3 0.00175± 0.00006 1.253± 0.040 38.27 0.00

Table 2: Fit results for regime R2 (long range behavior).

l rmin rmax ND a b χ2 Q
20 3 6 4 0.00369± 0.00005 1.586± 0.009 3.22 0.52
30 5 8 4 0.00371± 0.00009 1.671± 0.012 3.50 0.48
40 8 13 6 0.00388± 0.00005 1.760± 0.006 3.12 0.54
50 7 10 4 0.00390± 0.00011 1.783± 0.014 3.19 0.53
60 10 19 10 0.00393± 0.00002 1.826± 0.002 3.27 0.51

Finite-size scaling
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Figure 5: (a) Dependence of the exponent b on the linear sys-
tem size l (regime R2). (b) Scaling behavior of saturation value
〈|∆Fij|〉(r = l − 2) on system size l.

Long-range response in DC electricity grids

→ It is worthwhile to compare these results to a recent study on
the long-range response in DC electricity grids [2].

→ Considering constant link conductances Yij ∈ R, ohmic resis-
tances as well as Joule’s heating dPΩ

ij [2].

( a ) ( b )
Figure 6: Change of DC power flow ∆Fij in dependence of the
distance r to the added link [2]. (a) Regime R1, (b) regime R2.

→ Finding power law dependence as well, but with different expo-
nents bDC,R1 and bDC,R2 (see Fig. 6).

→ In DC system, bDC,R1 > bDC,R2, whereas in AC system,
bR1 < bR2.

→ bDC,R2 decreases with increasing system size l, thus showing an
opposing behavior to AC results [2].

→ Saturation value (not shown here) also scales as a power law with
system size, but with a rather different exponent dDC ≈ 1.36 [2].

Conclusions

→We have found a short as well as a long range response to local
grid modifications.

→ The data of the long range regime fits nicely to a power law,
whereas the short range regime leads to poor fits.

→ Results are similar to those of DC grids, but exponents and finite-
size scaling behavior are quite different, e.g. bR2 = 1.826±0.002
vs. bDC,R2 = 1.32 (each for the largest considered system size).

Outlook

→ Application to other topologies including real-world topologies.
→ Study time-dependent spreading of local phase perturbations,

following a recently published approach [3]. Clarify the role of
Anderson localization in AC transmission grids.
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